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ABSTRACT 

An a n a l y t i c a l  study and laboratory evaluation of plasma-arc-sprayed 

coat ings was conducted. 

systems w e r e  recommended f o r  t e s t i n g  with subscale nozzles.  

t e s t i n g ,  t h r e e  T i t an  I1 second-stage combustion chambers w e r e  modified and 

i n s t a l l e d  on sur face  Wing I Minuteman s o l i d  propel lant  motors. 

test f ik ing  was with an uncoated nozzle and resu l ted  i n  a typ ica l  heat 

t r a n s f e r  type burnout. 

and w e r e  successful.  

by 58% a f t e r  start-up. 

A t  t h e  conclusion of t h i s  e f f o r t ,  t h r e e  coat ing 

For subscale 

The f i r s t  

The second and t h i r d  tests w e r e  with coated nozzles 

On the  t h i r d  f i r i n g ,  t h e  water flow rate was reduced 
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I. SUMMARY 

This r epor t  covers the investigapive,  laboratory evaluation and s ta t ic  

tes t  evaluation phases of a program performed with t h e  object ive of developing 

a thermal b a r r i e r  coating t o  be  used with a water-cooled nozzle of a l a r g e  

s a l i d  propel lant  rocket motor. 

A thermochemical ana lys i s  of candidate plasma-grc-sprayed thermal bar- 

rier materials w a s  performed. The promising materials were then evaluated by 

laboratory tes t ing .  Plasma-arc-sprayed d i s c  specimms were used i n  screening 

tests designed t o  provide thermal conductivity da ta  and preliminary assessment 

of resistance t o  oxidation and thermal shock. Select ion of candidate coatings 

f o r  evaluation with subscale nozzle test f i r i n g  w a s  made on the  bas i s  of 

5-tube specimen oxidation and thermal shock tests. 

mens w e r e  cycled i n  and out of a plasma flame providing a heat  f l u x  of 6 Btu/ 

in .  -sec-"F and a nominal sur face  temperature of 3200'F. The cooling systems 

recommended f o r  fu r the r  evaluation by subscale t e s t i n g  were A 1  0 /Mo, A 1  0 / N i  

and Ni-coated A 1  0 

I n  these tests, the  speci- 

2 

2 3  2 3  

2 3' 

Concurrent with the  ana ly t i ca l  and laboratory evaluation of w a t i a g s ,  

th ree  subscale nozzles were designed and fabricated.  

saving, Ti tan I1 Second-Stage combustion chambers were modified f o r  use as 

water-cooled nozzles on surp lus  Minuteman Wing I motors. 

vide a manifold and water o u t l e t  and an a f t  closure t o  replace the  ex i s t ing  

I n  the  interest  of cos t  

An adapter t o  gro- 

four-nozzle Minuteman a f t  c losure were designed and fabricated.  

A heat t r a n s f e r  ana lys i s  was performed t o  determine the  theTmal bar- 

rier thermal r e s i s t ance  requirements and t h e  water flow requirements, Design 
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parameters w e r e  t o  obtain a coating temperature of 3000 t o  3200'F while hold- 

ing the  coating s i d e  tube w a l l  temperature t o  17OOOF o r  less and a burnout 

hea t  f l u x  r a t i o  of 0.7 o r  lese. The burnout hea t  f l u x  r a t i o  is defined o r  

t he  r a t i o  of t he  actual hea t  f l u x  t o  the theo re t i ca l  burnout hea t  f lux.  

T e s t  f a c i l i t i e s  were constructed a t  AE'RPL, Edwards, Cal i fQrnia  where 

three  test f i r i n g s  w e r e  performed during t h e  course of t h e  program, 

TEST HISTORY-WATER-COOLED NOZZLES 

Water Flow 
Rate, lb / sec  

T e s t  No. Nozzle Thermal Barrier e _I Min Results 

1 01  None 164* 117 Heat t r ans fe r  burnout, 

2 02 (Figure 12) 171 165 Successful - coating 
in t ac t .  No regression. 

3 93 (Figure 12)  200 84 Successful - coating 
in t ac t .  No regression, 
water flow reduced by 
58%. 

* Before burnout 

Four test f i r i n g s  were planned, one uncoated and three coated; however, 

unanticipated post-test  ana lys i s  cos ts  and schedule delays necessi ta ted the 

decision t o  de l e t e  the four th  test. 

The f i r s t  test f i r i n g  w a s  with an uncoated nozzle and resu l ted  i n  a 

tube burnout. Post- tes t  ana lys i s  indicated t h a t  t h e  burned out tubes were i n  

a pa t t e rn  d i r e c t l y  r e l a t ed  t o  the  propel lant  grain pat tern.  

analysis  supported the  conclusion t h a t  a t  s t a r t u p  loca l ized  heat  f luxes due 

Heat t r ans fe r  

t o  the grain pa t t e rn  were equal t o  double t h e  average value predicted. 

Page 2 
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Nozzle SN 02 was coated with one of t h e  candidate systems studied i n  

Task I: and w a s  test f i r e d  i n  September 1968. This test was succegsful, Based 

on the  metal lurgical  posc-test ana lys i s  and on ana lys i s  95 the  test data ,  t he  

following major conclusions were made: 

1. The coating remained i n t a c t .  

2. The alumina i n  the  propel lant  exhaust gas plated out i n  a uniform 

manner over t he  nozzle with thickness up to  3/& inch i n  the e x i t  

area and on cooling cracked and f e l l  o f f  i n  the  divergent sect ion.  

3. The bulk temperature rise w a s  considerably less than predicted 

indicat ing t h a t  t he  propel lant  plated alumina w a s  very e f f e c t i v e  

i n  reducing hea t  f l u x  f o r  times g rea t e r  than a few seconds a f t e r  

ign i t ion .  

To fu r the r  test  the  theory t h a t  the  thermal b a r r i e r  coating is  possibly 

needed only on s t a r t u p  and t h a t  t he  propellant alumina provides an exce l len t  

thermal b a r r i e r  once the  high l o c a l  hea t  f luxes during s t a r t u p  are survived, 

i t  w a s  proposed t h a t  f o r  t he  t h i r d  test ,  the  water flow rate can be  reduced i n  

s t eps  a f t e r  10 seconds t o  one-half t h a t  required during the  start  t r ans i en t ,  

The t h i r d  nozzle w a s  test f i r e d  i n  February 1969. The water flow rate 

w a s  reduced as planned and the  nozzle survived with no apparent leaks o r  

abnormalities. 

Page 3 
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11. INTRODUCTION 

Solid propel lant  rocket  nozzles and l i qu id  propel lant  rocket  cambustion 

chambers perform the  same function and are subjec t  t o  the same l imi t a t ion ,  

t h a t  ex is t ing  materials do not  retain t h e i r  s t rength  and i n t e g r i t y  a t  the 

extreme temperatures developed. 

the high temperature: 

w a l l  and piping it elsewhere (regenerative cooling);  two, cooling the  w a l l  

by spraying a coolant on o r  through the w a l l  ( f i lm and t ranspi ra t ion  cooling) ; 

three,  cooling the  sur face  by chemical reac t ion  of t he  material (ablat ion);  

and, four ,  cooling the sur face  by conduction to a l a rge  heat  s ink.  Regenerative 

cooling i s  the  most e f f i c i e n t  system, i f  the  quant i ty  and qua l i ty  of coolant 

ava i lab le  is su f f i c i en t  t o  cool the w a l l  material t o  an acceptable leve l .  

However, the balance has become increasingly d i f f i c u l t  t o  obtain.  

propellants are of ten not  e f f ec t ive  coolants and with these propel lants  heat  

f luxes up t o  50 Btu/in. sec, coupled with poor coolant has made necessary 

e i the r  thermal b a r r i e r s ,  f i lm o r  t ranspi ra t ion  cooling o r  a combination of 

these t o  make regenerative cooling p rac t i ca l .  

There are four  bas i c  methods f o r  withstanding 

one, removing the hea t  from the  nozzle and chamber 

High energy 

2 

P a s t  attempts t o  use thermal b a r r i e r  coatings have not been p a r t i c u l a r l y  

successful.  I n  pa r t ,  t h i s  is because the coatings were not spec i f i ca l ly  

designed fo r  the  environment within which they were requ i r ed  t o  function. 

Considerable analysis  and study has been done s ince  ear ly  attempts and an 

increasing number of successful  appl icat ions have shown t h a t  a properly designed 

and applied coating can be r e l i e d  upon t o  reduce the hea t  f l ux  t o  the coolant 

and therefore  extend engine l i f e  and improve engine performance. 
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The concept of employing a water-cooled nozzle with a solid propel lant  

rocket motor is  a technological extension of t he  PXQVW regenerative-cooling 

syetems employed i n  l i qu id  engines. However, since the  coolant i@ not used 

as a f u e l  and serves no o ther  purpose, it is evident that the coating sysfitm 

employed must be one of maximum ef f ic iency  i n  order t o  result i n  minimum 

coolant and addi t iona l  motor weight. 

The objec t ive  of t he  invest igat ion described berein was t o  develop a 

r e l i a b l e  A1203 thermal b a r r i e r  coating tha t  could be applied t o  a l a rge  water- 

cQoled nozzle and provide a subs tan t ia l  reduction of heat f l u x  t o  the wo lan t .  

Plasma-arc-spraying w a s  selected as the method f o r  applying the  thermal 

b a r r i e r  because it i s  the  most p rac t i ca l  method tha t  can be employed with 

l a rge  noezles where accurate dimensional control  of thickness is required. 

The approach followed was t o  design and select candidate coating 

systems compatible with the  environment, screen and evaluate these by 

laboratory t e s t ing ,  and select and test: the bes t  coatings i n  a subscale 

nozzle. 

Page 5 
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111. SELECTION OF COATING SYSTEM 

A. SCREENING 

A list of candidate materials w a s  compiled from appl icable  

l i t e r a t u r e  and recent  Aerojet programs. 

thermochemical ana lys i s  f o r  t h e  purpose of e l iminat ing those whose corrosion 

resistance would be poor because of reac t ion  with the  gas species or with A1203. 

These materials w e r e  subjected t o  

1. Compatibility of Candidate Coating Materials with A12g3 
The systems s tudied  w e r e  based on A1203 with Mo, W, N i  and 

C r  addi t ions as re inforc ing  agents.  

and the  re inforc ing  materials w a s  examined by evaluat ion of the  f r e e  energies 

of poss ib le  react ions.  

The p o s s i b i l i t y  of reac t ion  between A1203 

These were calculated as follows: 

F ,  K c a l  
2240'F '314O'OF 

No + A1203 

2Cr f A 1 2 0 3 W  

W -k A1203 

3Ni + A1203*= 

Moo3 + 2A1 +190 4-159 

Crq03 + 2 A 1  +lo7 + 99 

W03 + 2 A 1  +174 +163 

3NiO + 2Al  4-208 +20 2 

The f r e e  energies are a l l  pos i t i ve  and, therefore ,  the  reac t ion  t o  the  r i g h t  

i n  the  above equations is unfavorable. The candidate materials may be con- 

s idered compatible with A1203. 

throughout the  alumina, and the  alumina w i l l  be maintained a t  a temperature 

of 3000OF or  less, higher temperatures of reac t ion  i n  the  above cases were 

not considered. Thermochemical data  f o r  the  above oxides and other  candidate 

oxides are shown i n  Table I. 

Since the  metal phase w i l l  be d i s t r i b u t e d  
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2. 

The p r inc ipa l  chemical species  preslent i n  t h e  exhaust gas  

o f  t he  most oxidizing of the  two s o l i d  propel lants  under constderation for 

use i n  t he  program, ANB 3105, are a h m  below wi$h the volvme percentage pf 

each specie  i n  the  t o t a l  gas species  present at a chamber pressure of %IO p s i ,  

Specie. 

HC1 

N2 

H2Q 

w2 
H 

% Vol, 

13.1 

- 
8.4 

16.9 

27.0 

3.9 

co 24.8 

1.9 c02 

A1203 ( l iquid)  25.5 (Wt % of propel lant)  

The remaining species ,  including many of the oxidants such as 

02, P, OH, and N0,are present i n  amounts of less than 1% by volume and their 

e f f e c t  on the  t o t a l  reac t ion  with the  thermal b a r r i e r ,  therefore ,  I s  minimal, 

Thermochemical analyvis of the  poss ib le  reacCians involving 

the  exhaust gas species  and the  prime thermal barrier candidate materials, 

A1203, W, Mo and N i  are shown i n  Table 11. 

The only reac t ions  which are favorable t o  proceed t o  the  

r i g h t  have a negative f r e e  energy. The species  i n  the exhaust gasas which are 

present i n  t h e  l a rges t  amounts are compatible a t  the  temperatvres shown s ince  

they exhib i t  pos i t i ve  f r e e  energy of react ion.  

l i t e r a t u r e  search and the  compatibi l i ty  s tud ie s  presented above are l i s t e d  

i n  the  Bibliography a t  the  end of the  repor t .  

References used f o r  the 
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3. 

The literature search performed during t h e  i n i t i a l  s t age  

of the  material screening task f a i l e d  t o  provide adequate thermal conductivity 

da t a  for a good heat  t r ans fe r  analysis .  There w a s  no d a t a  f o r  mixtures of 

materials and da ta  given was f o r  s o l i d  materials r a t h e r  than plasmaLsprayed 

materiafs. 

measurements of t he  materials i n  t h e  as-sprayed condition were necessary. 

Thus, it was  evident ea r ly  i n  t h e  program t h a t  conductivity 

The method developed a t  Aerojet-General f o r  oxidation and 

thermal shock t e s t ing  of thermal b a r r i e r s  permits der iva t ion  of a rough 

measure of thermal conductivity. 

d i s c  specimen i n  a water-cooled f i x t u r e  and exposing t h e  specimen t o  a plasma 

The test is  performed by mounting a coated 

flame. The gas-side temperature is measured with an o p t i c a l  pyrometer and t h e  

heat f lux  is measured with a water-cooled calorimeter. Coating thermal 

res i s tance  (9 is calculated as follows: 
K 

T T 
Q/A (heat flux) = g (gas s i d e  temp) - 2 (water s i d e  t a p )  

.!i ( s t a in l e s s )  + A  coating K K 

Since the  thermal conductivity of t he  s t a in l e s s#s t ee l  d i s c  is known, 

coating can be calculated.  

of t he  

The thermal conductivity of the  coating i s  derived 

by dividing the  thickness by t h e  thermal res is tance.  

To provide a s t a r t i n g  point f o r  t h e  i n i t i a l  tests, thermal 

conductivity of mixtures of A1203 and candidate metals w e r e  calculated 

using the  Lichtenecker formula given below, which is  appl icable  t o  mechanical 

mixtures of two materials between which no s o l u b i l i t y  o r  chemical reac t ion  

occurs : 
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o r  Log Km =: P1 log K1 f (l-P1) log K2 

where 
Km = thermal conductivity of mixture 

K1 & K2 = thermal conductivity of components and 

P1 = volume f r ac t ion  of component oqe 

one and two, respect ively 

The conductivity of t he  mixture is , as noted above, dependent 

on the  volume Fraction of t h e  components involved, but t o  de t emine  the  proper 

proportion of mixture i n  spraying, t h e  weight Fraction o f  t h e  components i n  
the  mixture must be known. 

fracticm is given by t h e  following formula: 

The r e l a t i o n  between volume f r ac t ion  and weight 

where 
W1 = weight f r ac t lon  of component one 

D1 & D2 = dens i t i e s  of components one and two, 

V1 = volume f r ac t ion  o f  component one 

respect ively 

The thermal conductivity of alumina used was that; presented i n  

vendor's da ta  (both Norton and Metco), 1.58 Btu/ft-hr-OF over the  range of 

temperature between 1000 and 2000°F, and two values of the  conductivity of 

chromium and nichrome a l loy  were used, 2 / 3  and 113, respect ively,  of t h e  average 

values given i n  tab les  f o r  these metals between room temperature and 10QO°FI 

Two values of thermal conductivity f o r  both molybdenum and tungsten were a l s o  

used; 2/3  of the  average value between 1000 and 300Q°F, and t h e  experimentally 

determined values obtained f o r  t he  sprayed metals i n  previous Aerojet programs. 
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After calculating the thermal conductivity of the various 

volume mixtures of each of the metals with alumina, the thickness of coating 

required for each of the volume mixtures was calculated to provide the desired 
2 thermal resistance of 250 (in. -sec-OF/Btu). The thermal resistance is the 

coating thickness of a given coating divided by the thermal conductivity of the 

coating. The required thicknesses were plotted on semi-logarithmic graph paper 

with thickness of coating in mils as the ordinate and percent volume of metal 

addition as the abscissa - the corresponding percent weight of metal additiorl 
to alumina is also shown on the abscissa. Figure 1 is shown for illustration. 

K was calculated for all the coatings tested. 

Results of the thermal conductivity, oxidation and thermal shock 

Calculations made from the temperature and heat tests are shown in Table 11. 

flux data indicated that the K values used were generally too high. Revised 

values were used for the second series of tests. As can be seen in Table 111, 

the surface temperature obtained on most specimens exceeded the 3000OF desired 

indicating that the revised K values were again too high. 

was calculated for this series of tests as shown in the last column of Table IV. 

To more accurately determine K values for use in 5-tube specimen testing, special 

specimens were prepared for measurement of thermal diffusivity. The thermal 

diffusivity was measured by the method described by Parker (1). 

conductivity is derived from the thermal diffusivity measurement as follows: 

Thermal conductivity 

Thermal 

K = c( . P . C 0.0056 
P 
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where 

K = thermal conductivity Btu in./sec/in.2/0F 

= thermal d i f f u s i v i t y  cm2/sec 

P * Density g ran tdm 3 

Cp - s p e c i f i c  heat  per u n i t  mass 

The results of thermal d i f f u s i v i t y  measurements converted t o  

K are shown i n  Table V. 

ness f o r  the  test nozzles. 

These da t a  were used i n  calculat ing coating thick- 

The measurements were taken a t  1400°F, the  upper 

temperature l i m i t  of t h e  equipment, while t h e  average temperature of t he  

coating a t  t he  test nozzle throa t  is calculated t o  be around 2300OF. 

i t  appeared reasonable t o  extrapolate  based on known behavior of so l id  materials 

from 1400°F t o  2300OF. 

s l i g h t l y  from 1400OF t o  24OOOF. 

reasonably w e l l  with those calculated from the  d i s c  coupon tests shown i n  

Table IV.  

However, 

The thermal conductivity of ~ 1 2 0 3  and No both decrease 

The K values determined by these tests agree 

This comparison is shown i n  Figure 2.  

B. HATERIAL SELECTION 

1. Coating Adherence 

A test plan was prepared f o r  determining coating adherence 

as re la ted  t o  subs t r a t e  preparation and precoating material. 

constructed t o  perform bond shear tests w a s  patterned a f t e r  t h a t  used by 

Gr isaf fe  (2). The load required t o  shear t he  coating from the  subs t ra te  i s  

The test apparatus 

Sndicated i n  p s i  i n  Table V I .  

A1umini.de w i r e  and Nickel Aluminide powder. 

no surface preparations of t he  substrate .  

8 and 14 are probably not comparable i n  tha t  i t  proved impossible t o  spray 

in s ide  the  10,625 in .  d i a  x 0.25-in.-dia hole  of t h e  test f i x t u r e  with the  

oxy-acetylene wire gun and hold the  coating thickness desired. 

The primers evaluated were Nichrome, Mo, Nickel 

Tests 1 through 4 were made with 

The value indicated f o r  specimens 

The throa t  

Page 11 



Rep or t CR-7254 9 

s i ze  of the  test nozzle used precluded t h e  use  of t h e  w i r e  gun as an 

appl icat ion method. Based on these  tests, Nickel Aluminide powder applied by 

plasma-arc w a s  se lec ted  as the  primer and g r i t  b l a s t  with si l icon-carbide 

g r i t  t o  obtain maximum (250 microinches) roughness w a s  se lec ted  as t h e  

surface preparation. 

optimum at  the  time of a previous subs t r a t e  preparation evaluation program a t  

Aerojet (Ref 3) and confirms f indings by Gr isaf fe  (2). 

The use of SIC, 24-28 mesh g r i t ,  w a s  es tabl ished as 

2. Oxidation and Thermal Shock Tes t ing  

The heat  t r ans fe r  study conducted under the  nozzle design 

task of t he  program concurrently with t h e  material screening and material 

se lec t ion  task predicted t h a t  a thermal r e s i s t ance  of 250 in. '-sec-OF/Btu 

i n  the  nozzle throa t  would be required t o  obtain a gas s i d e  temperature of t h e  

coating of 300O0F. 

Al203. 

and the  i n i t i a l s e r i e s  of d i s c  specimens were used as a screening test  fo r  

oxidation and thermal shock t e s t ing  as w e l l  as t o  provide the previously 

discussed da ta  €or calculat ing thermal conductivity. 

This w a s  t h e  targeted maximum gas s i d e  temperature fo r  

Calculations were made t o  determine the  coating thickness required 

The test consisted of exposing t h e  specimen t o  a plasma- 

arc-flame f o r  a period of time s u f f i c i e n t  t o  obtain t h e  surface temperature 

reading with an op t i ca l  pyrometer than cycling 10  cycles of 10 sec of 

heating and 5 sec cooling. 

Table I1 contains the  r e s u l t s  of t h e  tes t ing .  

too high because of t h e  previously discussed use of K values t h a t  were too 

high and considerable melting and spa l l i ng  were observed. 

w e r e  usefu l  i n  es tab l i sh ing  more accurate  values f o r  subsequent specimens. 

2 The tests were performed at  7 Btu/in. -sec-'F. 

The surface temperatures were 

However, t he  tests 
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higher than desired and some melting occurred. No cracking was 

chromium, 

tests described suggests t h a t  there  i s  a r e l a t ion  between thermal conductivity 

and coating thickness. 

thickness, This shQuld be invest igated i n  future  work, It i s  evident that more 

accurate measurement of thermal conductivity of piasma-spraycd coatings I s  

needed. 

The r e s u l t s  of thermal conductivity ca lcu la t ions  i n  the  two serie 

Thermal conductivity increases  with an increase i n  

Based on the  results of t he  second d i s c  specimen test series, 

6 coating systems were selected f o r  applgcation and t e s t i n g  with 5-tube specimen$. 

Five-tube specimens W-1 through -6 were constructed equivalent t o  d i s c  specimens 

19, 22, 24, 25, 26 and 29. 

thermal shock and thermal res i s tance  tests at 6 Btu/in.'-sec-'F and a t  a nominal 

3000'F surface temperature. 

exhaust gas w a s  simulated by the  addi t ion of oxygen and acetylene t o  the  plasma 

gas. 

See Table V I I ,  These specimens were subjected t o  

I n  addi t ion,  t h e  oxidizing e f f e c t  of t h e  260-in, motor 

The r e s u l t s  of these tests confirmed the  r e s u l t s  obtained with the  d i s c  
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To determine t h e  as-sprayed e f f e c t  of Ni-coated alumina powders, a comparison 

w a s  made of t he  microstructure before and after plasma spraying, and further 

with the  as-sprayed condition of t h e  80 Al2O3/2O N i m i x  powder. 

of t he  powder p a r t i c l e s  (Figure 3) show t h a t  t he  p a r t i c l e s  are i n  f a c t  coated, 

Photomicrographs 

however, examination a f t e r  plasma-arc spraying does not i nd ica t e  t h a t  t h e  coating 

continues t o  exist i n  t h e  as-sprayed material t o  a grea t  extent.  Specimen W6 has 

several l a r g e  gra ins  (Figure 4) i n  t h e  intermediate coat  with a suggestion i n  t h e  

l a rge  gra in  a t  the  r i g h t  t h a t  the  n icke l  s t i l l  surrounds t h e ' p a r t i c l e .  However, 

t h i s  evidence of n icke l  is not apparent i n  the  l a rge  p a r t i c l e s  i n  the  center  of 

the  picture .  The coating on specimen Xl8 (Figure 5) w a s  an 80 Al2O3/2O N i  mix. 

The horizontal  s t r i n g e r  o r  p l a t e l e t  e f f ec t  experienced with most metal ceramic 

mixes i s  evident. Referring t o  Table V w i l l  show t h a i  t h e  thermal conductivity of 

Ni-coated Al 0 

t h a t  of pure A1203. 

is more than twice t h a t  of t he  Ni/A1203/20 mix, and near ly  double 2 3  

Although the  value f o r  t h e  80 Al2O3/2O N i  mix is  unexplainably 

low (probably due t o  measurement e r r o r  o r  excess porosi ty)  t he  comparisons ind ica t e  

t h a t  a continuous metal matrix probably e x i s t s  throughout t he  Ni-coated Al 0 

s t ruc tu re ,  thus creat ing a heat  flow path and accounting f o r  t he  high conductivity. 

2 3  

A f i n a l  test series w a s  made i n  which the  4 remaining coating 

system candidates w e r e  compared on the  bas i s  of coating regression. 

i den t i ca l  5-tube specimens w e r e  prepared with each coating system and one 

specimen w a s  coated with pure alumina. 

the  plasma flame f o r  150 sec continuous exposure, and t h e  o ther  end w a s  t e s t e d  

250 sec 25 cycles of 10 sec on and 5 sec  o f f .  

gases, oxygen 100 SCF/hr and methane at 50 SCF/hr w e r e  introduced i n t o  t h e  

Three 

One end of t h e  specimen w a s  t e s t ed  i n  

To simulate rocket combustion 

plasma flame f o r  5-tube specimen tests. 

d i s c  specimen tests. 

i n  Table V I I I .  

These gases w e r e  not used f o r  t h e  

The coating composition and t h e  test r e s u l t s  are shown 
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After t e s t ing ,  megsurcments were made t o  de termhe regre  

Copslderable spread wqs  noted, 

specimen8 with a pure alumina topceat over an a 

regress  less than that with the  alum 

pure a l m l n a  topcoat $n both the  steady exposure and cycling tests. 

spa l l ing  of the topcoat occurred i n  the  cycllng tests o f  spacbena  X13, X14, 

and X15 wh$ch are a 70 A1203/30Mo second coat  with a pure A1203 tclpcoa 

However, It is  evident t 

$,one 

The three  specimens (XlO,  Y l l ,  and X12), coated with a 

0,006-in. of 70 Al2O3/3O Mo powder, had the same regression rate as t he  pure, 

alumina coating f a r  the  continuous 150 SBC f i r i n g ,  bu t  had a much higher 

regression rate f o r  the 25 cycle f i r i n g  consis t ing of 10 sec  on, 5 sec o f f ,  

f o r  each cycle. 

It i s  a l so  possible  t h a t  ~ o m e  oxidation rf t he  molybdenum is o c c u m h g  dllrring 

the off cycle; t he  off cycle time is  not included i n  ca lcu la t ing  the  regresston 

rate. 

This probably hdrlcates  the  effects of thermal stresses. 

The appearance of  the  specimens suggests some spa l l lng  acculrrri3d. The 

thermochemical analysis  made a t  the  beginnine of the program indicated t h a t  

react ion of molybdenum with H2Q, C02 and 0 was favorable,  2 
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The next th ree  specimens, X13, X14, and X15 consisted of a 

two-layer coating, 3 m i l s  of 70A1203/30 M o  overlayed with 2 m i l s  of A1203 (Xl4), 

3 m i l s  of A1203 (X13), and 4 m i l s  of A1203(X15). 

regression rates in the  150 sec continuous f i r i n g  than e i t h e r  t h e  pure A1203 

coating (X19) o r  the s t r a i g h t  7OAl2O3/30Mo (X10, X 1 1 ,  and X12). 

been due t o  oxidation pro tec t ion  of t h e  molybdenum by t h e  A 1  0 2 3  

the  in te rmi t ten t  cycled f i r i n g s ,  higher regression rates w e r e  observed and it 

appeared l i k e l y  t h a t  t h e  difference i n  the  thermal expansion cha rac t e r i s t i c s  

A l l  these  specimens had lower 

This may have 

overlay. During 

caused some l o s s  of material by spa l l ing .  The appearance of t h e  specimens 

suggests spa l l ing  i n  some areas. 

temperature (4730OF) as t h e  m e t a l .  The dioxide, however, can be readi ly  oxidized 

The dioxide,  Moo2, m e l t s  a t  about t he  same 

by oxygen t o  the  v o l a t i l e  t r i ox ide  MOO 

f r e e  energies f o r  t h e  react ions of carbon dioxide and water vapor with molybdenum 

which sublimes a t  about 2100'F. The 3 

dioxide,  are pos i t ive ;  however, t h i s  ind ica tes  t h a t  these gases w i l l  not 

readi ly  oxidize the  MOO 

and N i O  a t  2240OF points  up t h e  differences i n  the  v o l a t i l i t y  of these  two 

oxides. N i O  has a vapor pressure of 1.43 x 10 

MOO has a vapor pressure a t  2240OF of 0.6 atmosphere. Therefore Yo0 is 3 3 

much more l i k e l y  t o  vaporize than N i O .  

3 t o  Moo3. A comparison of t he  vapor pressure of MOO 2 

-8 atmospheres a t  2240OF while 

Specimens X7,  X 8 ,  and X9, were coated with three  m i l s  of nickel- 

coated alumina powder overlayed with three  m i l s  of alumina. 

X17, and X 1 8  consisted of t h ree  mils of 80A1203/20Ni overlayed with three  m i l s  

of alumina. These, i n  general ,  performed b e t t e r  than t h e  coatings containing 

Specimens X16, 

Mo. 

bas i s  (AF) a t  2000 and 3000OF. 

The oxidation of n i cke l  by H20 and GO2 is  shown below on a f r e e  energy 
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2Ni + 2C02 -f 2Ni0 + 2CO 

N i  + H20 -+ N i  0 3. H2 

2Ni 4- O2 -+ 2Ni0 

AF, Kcal 
3 0 0 m  2 0 0 ° F  P 

-7 +2 5 

- 16 +18 

-5 0 -30 

This would ind ica te  t h a t  t he  r eac t i an  i s  favorable. in t he  

case of C02 at  2000°F and unEavorable i n  the case of H20. Any excees oxygen 

would also favor oxidation i n  a reac t ion  with n i cke l  a t  these  temperatures. 

A t  3000"F, both H20 and C02 i n  the  above react iops w i t h  n icke l  have pos i t ive  

f r e e  energies and are therefore  unfavorable. 

It should be noted t h a t  n icke l  oxide melts a t  3610°F while 

n icke l  m e l t s  a t  2650'F. Thus, oxidation of n icke l  promotes t he  formation of 

a more re f rac tory  and s t a b l e  product (NiO) than t h e  metal i t s e l f ,  

The f r e e  energies of CH4, CO, and H 0 with A1203 are pos i t i ve  2 

a t  both 2000 and 3000°F as indicated below, and, therefore ,  regression due t o  

oxidation is not predicted.  However, measurement of specimens befpre and a f t e r  

t e s t ing  ind ica t e  a reduction i n  thickness had  occurred. 
AF, Kcal 

2000°F' " -!itiEE 
CH4 + 2A1203 4A10H -t C02 

CO + A1203 A1203 3. C02 

H20 + A1203 2A120 H + O2 

+459 +312 

3.164 +I42 

+248 3.217 
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The regression rates of specimens with a nickel-coated 

alumina second coat are compared i n  Table IX with s p e c h e n s  employing a 

80 A1203/20 Ni mixture. 

as  follows: 

The average regression rate i n  mils per second are 

Ni-Coated Alumina N i s A l u m i n a  Mix 

Continuous 0 0022 0.0055 

Cycling 0.0019 0.0120 

These above comparisons ind ica te  tha t  superior  r e s u l t s  w e r e  

obtained with nickel-coated alumina. However', examination of the regression 

rates of individual  specimens shows t ha t  specimen X17 has a regression r a t e  of 

0.0133 f o r  the 150 continuous exposure test, but  only 0.0020 f o r  the cycling 

tests (250 sec) .  This d i f fe rence  suggests a measuring e r ro r .  If specimen X17  

is omitted from the  calculat ion,  the  average regression r a t e  f o r  continuous 

exposure f o r  nickel  alumina mix specimens becomes 0.0017 ( s l igh t ly  less than 

the r a t e  of nickel-coated alumina) an in s ign i f i aan t  difference.  

The following comparison can be made of cycling test r e s u l t s  

of 5-tube specimens and d i s c  specimens considered separately:  

Ni-Coated Alumina Ni--Alumina Mix 

5-Tube Specimens 

0.0022 0.0017 

0.0007 0.0033 

Continuous 

Cycling 

Continuous 

Cycling 

D i s c  Specimens 

0 - 
0.0058 0.0250 
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It can be seen from Table TIE t h a t  t he  regression rates of 

d i s c  specimens 34 and 35 (0.02 and 0.03, respect jxely)  have the  greacest  

influence on the  combined averages. 

with a ni t rogen plasma and an argon sh ie ld  gas without t he  addi t ion o f  oxidizers  

O2 and CH4 suggests t ha t  the  reduction i n  coating thickness may be  due t o  a 

mechanism such as s in t e r ing  r a the r  than oxidation. 

and CH4 i n to  the  flame i n  the  5-tube specimen tests spreads the  flame over a 

la rger  area and thus r e s u l t s  i n  less measured reduction of coating thickness 

Thq fac t  t h a t  these speclmens were tegted 

The introduct ion of O2 

than with the  d i s c  specimens where t h e  flame is concentrated QD the center o f .  

the  d i sc .  The concentrated heat i n  t h a t  area may r e s u l t  i n  a local ized shr ink 

due t o  s tn t e r ing .  

Evidence of s in t e r ing  of Alumina coatings can be found i n  

the  temperature trace during the 150 sec exposure test .  The temperature readings 

obtained appear t o  be pecul ia r  f o r  each coating system but  a l l  start hi@ and 

drop rapidly,  then continue t o  decrease a t  a very muct slower rate throughput 

the  test ,  A range of 300' has been noted. 

Specimen X18 (Table VIII) w a s  sectioned and examined f o y  

comparison of microstructure as sprayed t o  a f t e r  150 sec exposure. The before  

and after photomicrographs are shown i n  Figure 5 .  

miurostructure along the  top surface of the  exposed area, 

Note %he refin@ment of the 

To fu r the r  pos tu la te  concerning the  apparent lower regression 

rate of nickel-coated powders i n  the  plasma-arc-tests, the  f i n e r  p a r t i c l e s  o f  

the  Ni-alumina mix would be  expected t o  compact or shr ink more on p a r t i a l  

s in te r ing  than the  coarse p a r t i c l e s  t h a t  make up che nickel-coated alumina 

powder. This occurs because f i n e r  powders have a grea te r  nuqber of  points  of 

contact and a grea te r  f r e e  energy associated with t h e i r  surface area and there- 

fore  they w i l l  densify a t  a lower temperature than coarse powders, 
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mer cos t  and lower thermal cond 

coated alumina s 

system to be  se lec ted  a f t e r  t he  planned uncoated test and the two coated tests. 

As w i l l  be  brought out i n  Section I V ,  C of t h i s  report ,  it was  

necessary t o  reconsider t he  coating system recommendations made a t  t h e  conclu- 

s ion  of t he  Material Screening and Material Select ion Task i n  the  l i g h t  of t h e  

r e s u l t s  of the  uncoated nozzle test f i r i n g .  

analysis  cos ts  and schedule delays a decision w a s  made t o  de l e t e  t he  t h i r d  

coated test, 

dicted as sa fe ,  however, due t o  unanticipated l o c a l  high hea t  f l u x  area re l a t ed  

t o  t h e  s o l i d  propel lant  grain,  t he  nozzle suf fered  a burnout. 

Also due t o  unanticipated post- tes t  

The uncoated nozzle w a s  f i r e d  under water flow conditions pre- 

3. 

A s  p a r t  of the  Material Select ion Task, t he  f e a s i b i l i t y  of 

re inforcing the  bas i c  alumina coating with molybdenum wires w a s  investigated.  

This use of wire o r  screen i n  reinforcing a plasma-arc-sprayed coating is not 

new, but generally i t  is  accomplished by wrapping w i r e  over a mandrel simultane- 

ously with appl icat ion of the  coating. 

obtaining a f r e e  standing body a f t e r  removing the  mandrel. 

Most e f f o r t s  have been pointed toward 

A d i f f e ren t  approach 

tube bundle. 
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one power feeder and d i rec t ing  them in to  the  plasma stretam which Includes 

the alumins. Since t h i s  would req 

spec ia l  powder ( w i r e )  feeder ,  a se 

the  development of t he  wire feede 

The crjlteria set f o r t h  for m a x i m u m  effect iveness  of wire ra infwwmant  wae as 

fQllQws: 

1. Randm uniform d i s t r ibu t ion  throughout the coa$dng 
and over the  subs t ra te .  

2. 

3. Orientat ion of wires such chat tiha surface is nQt: 
appreciably rougher than can be  obtained wtth 
conventional coatings.  

Wires t o  b e  e n t i r e l y  surrounded by $he coat ing,  

4 .  Criteria 1 through 3 above t o  be  obtained with 
minimum melting of the  wires. 

The cost of wires i n  the  i n i r i a l  s i z e  selected,0.002 in. d ia  

x 0.050 i n .  lengthywas very high. Bids received ranged from $1500 p e r  pound 

t o  $698.50 per pound; Two pounds were purchase:? Errn General E l e c t r i c  Company 

a t  a $1,397 l o t  p r ice .  

is primarily t h a t  of cu t t ing  the  wires t o  length.  

has not been s u f f i c i e n t  t o  encourage any suppl ier  t o  i n s t a l l  hlgh produatlan 

Discussion with the s p p p l i e r s  ind ica te  t h a t  the cos t  

The demand for chopped wires  

equipment, Such equipment while i t  must be high speed and capable of precls lon 

adjustment f o r  s i ze  and length is considered t o  be  e a s i l y  wgzhin the  capabil5fy 

of moat machine too l  producers. 

a. Development of Wire fec3er 

An apparatus Eol: feeding wire was success d 

using a Syntron Vibrator t o  feed the  w i r e  i a t o  a speclal3.y det35qnsd asp i rq t e r  

which could b e  d i rec ted  a t  any des i red  angle i n t ?  the  plasma stream, 

ents conducted t o  optimize the  gas flow s e t t i n g -  t h e  v ibra tor  s e t t  

ExperiT 
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torch s e t t i n g  and the  w i r e  fo subs t r a t e  d i s t  

w a s  decided t o  p r  tes 

original supply of 2 l b  of w i r e  had been exhausted a t  t h i s  point  and a new sup- 

ply w a s  ordered. To assess t h e  e f f e c t  of s l i g h t l y  l a r g e r  w i r e s ,  t he  second l o t  

w a s  spec i f ied  t o  be 0.005 in .  d i a  x 0.060 in .  length. 

feeder and a sp i r a to r  handled t h i s  s i ze  very w e l l ;  however, t h e  deposit ion rate 

It w a s  found t h a t  t he  

was judged t o  be lower than with the  smaller wires. 

t o  m e l t  s l i g h t l y  and s t a y  i n  the  plasma stream, whereas the  l a r g e r  w i r e s  did 

not m e l t  and tended t o  bounce of f  the subs t r a t e  giving poor r e s u l t s .  

The smaller wires tended 

However, 

the  feeding mechanism fed the  wires i n t o  the  plasma a t  a uniform and adequate 

rate. 

b. Testing of 

To compare 

t o  the  nickel-reinforced alumina 

Wire-Reinforced Coatings 

a molybdenum wire-reinforced alumina coating 

coatings f o r  resistance t o  thermal shsck, i t  

i s  necessary t o  subject  t he  coatings t o  severe enough thermal shock tha t  

cracking can be induced. The tests performed i n  the  f i r s t  s tages  of the pro- 

gram did not produce cracks i n  any of the  specimens. 

t h i s  and other  programs points  t o  the  r e l a t i v e  thinness of t he  coating as  the  

Experience at  Aerojet on 

reason no cracks occurred. Cracks have been induced with the same test condi- 

t ions  where thick coatings are being tes ted .  

each of t he  previously devel 

Therefore, severa l  specimens of 

-alumina coatings as w e l l  as the  ant  

e-alumina coating w e r e  prepared i n  thicknesses of over 
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The f i r s t  series of tests were with d i s c  specimens 

tes ted  as delineated i n  Table X with the  object ive o f  determining the  eEfect 

of varying percentages of Mo wire content. 

s e t t i n g s  used. 

between high and low w i r e  content. The regression r a t a s  were very low, but 

some cracks were observed ind ica t ing  the spraying process aay have been 

compromised by introduct ion of the  wires. 

Dapositioo wa8 poor a t  a l l  the  

ICt was not possible  i n  tests o f  the  specimens t O  d i f f e r e n t i a t e  

The second series of tests, Table X I ,  were with 5-tube 

specimens and included thick coatings of the compositions previously tes ted  as 

t h i n  coatings i n  the  ea r ly  p a r t  of the program. The Mo wire coatings appeared 

rougher and contained voids i n  some 

as w i r e  deposit ion and dispersement 

rate was observed t o  be poor during 

examination a t  40X magnification. 

The heat f l u x  

6.9 Btu/in. -sec-OF. The specimens 2 

cases around the  wires. The r e s u l t s  insofar  

are concerned -ere disappointing. DepQsitiQn 

plasma spraying. This vas confirmed by 

during t e s t ing  w a s  es tabl ished a t  

were moved i; and out o t  the plasma j e t  

25 t i m e s  with 10 seconds exposure and 5 seconds cooldown. The surface tempera- 

tures were recorded and corrected t o  give t r u e  temperatures. It is evident 

t h a t  temperatures were generally highcr than planqed. Regression was very 

s l i g h t  i n  a l l  cases bu t  g rea t e r  where temperatures higher than 3200'F are 

recorded. 

cracking between thick control  coatings and th ick  Mo w i r e  coatings.  

There is  no s ign i f i can t  difference i n  regression ra te  o r  amoqnt of 

The test 
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r e s u l t s  do not  favor  the f u r t h e r  use of w i r e s  i n  coatings at least i n  the  s i ze  

used and i n  the  manner of deposi t  used. 

t h a t  t h in  coatings are considerably less suscept ib le  t o  cracking than th i ck  

coatings. 

T e s t  r e s u l t s  do confirm, however, 

Figure 6 upper i s  a photomacrograph of a d i s c  coupon 

and shows poor w i r e  deposi t ion and dispers ion as 

specimen i n  the  lower photo. 

The w i r e s  and p a r t i a l l y  melted w i r e s  on the  sur face  have oxidized. 

c. W i r e  Production Cost Study 

is also evident i n  t h e  §-tube 

Figure 7 shows a 5-tube specimen a f t e r  t e s t ing .  

When i t  was discovered ea r ly  i n  the  wire-reinforced 

coating inves t iga t ion  t h a t  the  cos t  of s m a l l  wires i n  small quan t i t i e s  w a s  

around $700.00/1b i t  w a s  decided t o  inves t iga t e  the  reasons f o r  the  high cos t  

and make a search t o  determine i f  a suppl ie r  e x i s t s  who can produce wires a t  

a reasonable cost .  

and f ab r i ca to r s  f o r  the required w i r e  c u t t i n g  capabi l i ty  and i f  an ex is t ing  

f a c i l i t y  was not found t o  prepare spec i f i ca t ions  f o r  the  design and f ab r i ca t ion  

of a wire cu t t ing  machine. Previous discussion with suppl ie rs  had indicated 

t h a t  the  cos t  is pr imari ly  t h a t  of cu t t ing  w i r e s  t o  length,  the  cost of cold 

drawn w i r e  being approximately $9O.OO/lb. 

The planned approach was  t o  survey a l l  knawn w i r e  producers 

Quotation requests  w e r e  s en t  t o  ten  suppl ie rs  f o r  cost  

of 0.002 in.-dia x 0.050 in .  length molybdenum w i r e s  in lots of 25, 50 and 

100 lb .  

$301.00/lb f o r  25 l b ,  255.00/1b f o r  50 l b  and $214.00/1b f o r  100 lb. 

Bids received w e r e  as high as $2,723.00/1b with the  lowest bid being 

This 
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and fabr ica t ion  companiesr 

and fabr ica t ion  t o  the  spec i f ica t ioQ a t  a cost ~f $52,250.00. 

Only one reply was received, t h i s  was €or  d w i g n  

SPFCIFTCATION 

Name : Wire Cutoff Machine 

Wire Size: Molybdenum and Tungsten Cold Prawn Wires i n  Renge 
of 0.002 to  0.005 in.  d i a  

Wire Data: Wire is furnished i n  spoo;Ls containing approximately 
7,000 meters (22,967 f t )  

PrQdwtion 40,000 pcslminute (minimum) 
Capacity : 

Cutoff 
Length : 

0.050 T 4- 0,005 in. t o  0.125 - 4- 0,010 

This is  a high prpduction machine and should be capable 

of running 8 hours without s top  f o r  resharpening o r  other  maintenance; however, 

the t o t a l  l i f e  operation t i m e  expectancy is  r e l a t i v e l y  short. -- approximately 

1,000 hours. 

Thfa w i r e  t o  be used has been Gleaned. The feeding and 

gathering system must be f r e e  From o i l  and other  foreign matter that would 

contaminate the  material. 

The gathering hopper uld feed i n t o  a small furanel t o  

f i l l  approxhate ly  quart size p 

para te  cu t t i ng  mechanisms each providipg ha l f  t he  

required production Modified ex i s t ing  equipment 

is  se a 
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To properly eval P 

preliminary design of a wire cu t  

of t he  equipment and production from t h e  equipment was made. 

was made a t  Aerojet  and an 

The design presented i n  Figure 8 consists of a constant 

speed revolving 2-bladed c u t t e r  which is f ed  by a powered wire feeder. 

w i r e  m u s t  be  rewound on the  s torage  spools which are mounted above the  shearing 

mechanism. 

which feeds i t  in to  the  cutoff  die. 

cu t t i ng  blade are independently control lable .  The r e l a t i v e  se t t i ngs ,  therefore ,  

control  the  length of the  w i r e .  

For example: 

The 

Wire is posit ioned through a starter tube and i n t o  a r o l l e r  assembly 

The speed of t he  r o l l e r  feeder and the  

With the  2-blade c u t t e r  t rave l ing  a t  1000 rpm 

(2000 cuts/min) t o  obtain a w i r e  length of 0.050 i n , ,  t he  w i r e  feed r o l l e r  

would have t o  feed w i r e  a t  the  rate of 100 in./min (0.050 x 2000). A 0.320-in.- 

d i a  feed r o l l e r  would, therefore ,  b e t  set a t  loo = 100 RPM 
IT 0.320 

The output of 0.002 in .  d i a  x 0.050 in. length Mo 

w i r e s  a t  the  feed and speed of the  example above would be 25 x 2000 x 60 = 

3 x 10 pcs/hr. Since there  are 18.2 x 10 pcs/lb,  one days production f igur-  

ing 7 hours run t i m e  would be 

head rate of $15.00/hr is used, 

6 6 

6 
lo = 1.15 lb/day. If a labor  and over- 

18.2 x 106 
cos t  per l b  is: 

Material 1.15/lb @ $90.00 = 103.50 

Labor 8 h r  @ 15.00 120 . 00 

TOTAL $223.50 

'223*50 = $194.35/lb 1.15 l b  
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The practical top production rate r f  t he  design shown 

is 1i'kely dependent on the  success o f  t he  spool 

A simple preloaded formed washer gpring des 

speeds may requi re  a more senslt l .vs and so 

uniform drag through an 8 hour xun t i m e .  

The coet of coxpplethg the  design, f ab r i ca t ion  and 

t o o l  proofing the machlne is esttmated t o  be  $22,000,00. 

The conclusions t o  ba drawn from the r e s u l t s  o f  t he  

wire cu t t ing  cos t  study are: 

2. Prices quoted by present suppl ie rs  f o r  small l o t s  are not 

unreasonable 

2. The quotation of $213.00/lb f o r  a 100 l b  l o t  f a l l s  w e l l  wi thin 

the, p r i ce  range estimated f o r  production from a high-speed special machine, 

I f  a requrlrement of 100 l b  i s  ever m t i c i p a t e d ,  t h i s  source? should be 

invest igated fur ther  t o  determine i f  the  6750.00 t r i a l  run i s  a good investment. 

3 ,  The present: suppl ie r  (General Electric Company) quoted 8457,OO/lb 

i n  100 l b  lots. This is a proven source. Based on t h i s  cost ,  design and 

fabr ica t ion  o f  a machine should be  considered f o r  any productign rcqulremants 

o f  100 l b  or  more. 
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IV. FABRICATION AND TESTING 

A. NOZZLE DESIGN ANALPSIS 

1. 

The bas i c  program requirement w a s  t o  test a water-cooled 

nozzle with a Wing I Minuteman motor. It w a s  determined i n  discussion with 

NASA t h a t  t h i s  could be a non-submerged nozzle, and secondly t h a t  i n  the  

i n t e r e s t  of cos t  saving, a Ti tan  I1 second-stage combustion chamber could be 

modified f o r  use, An adapter t o  provide a water o u t l e t  from the  tube t h a t  

normally would feed i n t o  the  i n j e c t o r  w a s  designed. 

closure t o  mate the  Minuteman motor t o  the  adapter w a s  required.  

chosen t o  e f f e c t  the  t r a n s i t i o n  i n t o  t h e  nozzle from the  motor w a s  t o  provide 

the  nozzle with an ab la t ive  l i n e r  of carbon phenolic and blend from the  a f t  

I n  addi t ion,  a new a f t  

The method 

closure with V61 t rowellable  rubber. Figure 9 s h m s  the  completed design. 

The completed design w a s  reviewed by the  stress sec t ion  and 

determined t o  be acceptable. No e f f o r t  was  made t o  minimize weight as t h i s  

is not a consideration f o r  static t e s t ing .  

2. Heat Transfer Analysis 

A hea t  t r a n s f e r  study w a s  made t o  optimize the  water flow 

requirements and t o  determine the bas i c  thermal b a r r i e r  res i s tance  t o  be used 

i n  coating design and development. 

Predicted gas s i d e ,  coolant s i d e  and bulk coolant temperature 

f o r  an uncoated nozzle are shown i n  Figure 10. 

the  i n i t i a l  estimate of water supply system minimum requirements w e r e  con- 

firmed at  130 l b / sec  flow and 750 p s i  i n l e t  pressure.  

On the  bas i s  of these da ta ,  
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From the  gas side tempergtu 

formulated f o r  applyi 

chamber. This techn 

i n  confirming predicted gas s i d e  temperatures. 

within 100°F can be expected. 

Accuracy i n  in t e rp re t a t ion  

The maximum s a f e  gas s i d e  temperature f o r  t he  alumina base 

thermal b a r r i e r  system was set a t  3000OF. 

t o  reach t h a t  temperature i n  t h e  throat  was 250 i n .  -sec-OF/Btu. 

The thermal reeis tance calculated 

These da t a  2 

were used i n  preparing and t e s t i n g  the  laboratory specimens described i n  the  

f i r s t  sect ions of t h i s  report .  

tube w a l l  temperatures f o r  a t / K  of 250 i n .  -sec-'F/Btu. 

Figure 11 shows the  predicted coating and 

2 

The f i r s t  test f i r i n g  with an uncoated nozzle SN 01  resu l ted  

i n  a burnout. 

t he  test da t a  ind ica te  t h a t  the f a i l u r e  w a s  marginal and permitted certain 

assumptions t o  be made as the  bas i s  f o r  a revised hea t  t r ans fe r  study, 

cont inui ty  of events and t o  show the  r e l a t ion  between test r e s u l t s  and design 

The f a i l u r e  analysis  performed on the  f i r e d  nozzle and study of 

For 

revis ions,  fu r the r  design and heat  t r a n s f e r  analysis  is  included i n  sequence 

of t e s t ing  and post- tes t  analysis  under the  heading S t a t i c  Tests and Post-Test 

Analysis appearing later i n  t h i s  report .  

B. NOZZLE FABRICATION 

Three nozzles were fabricated t o  t h e  design shown i n  the  Nozale 

Design Section above (see Figu 9) .  Three adapter assemblies and two a f t  

c losures  were fabricated.  The f i r s t  nozzle was f o r  the  uncoated f i r i n g  test 

and llncluded the  braze patches on the  tube crowns. The nozzle w a s  leak checked 

at 750 ps ig  before L f o r  test f i r ing .  Changes i n  t h e  nozzle 
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as a r e s u l t  of the post- tes t  ana lys i s  of the test f i r  re incorporated i n  

the second nozzle SN 02. These changes w e r e  t h e  rework at r 

t o  a tapered configuration and the  thinning of t he  tube w a l l  in the t 

area from 0.020-in. th ick  t o  0.015 in .  

On t he  b a s i s  of experiments with a hand-operated g r i t  b l a s t  nozzle 

on some 5-tube specimens, a g r i t  b l a s t  program was  prepared f o r  t he  purpose of 

reducing the  tube w a l l  from 0.020 in. t o  0.015-in. a t  t h e  nozzle throa t .  

Post- tes t  ana lys i s  determined t h a t  t he  w a l l  had i n  f a c t  been reduced t o  

0.013 in .  Tukon hardness tests on specimens indicated t h a t  the  g r i t  b las ted  

s i d e  of the  tube was R/C 35 compared t o  R/C 27.5 on t h e  s i d e  not  g r i t  b lasted.  

This represents  roughly an increase i n  t e n s i l e  s t rength  t o  150K due t o  work 

hardening. This increase i n  s t rength  is not  usefu l  inasmuchas the  stresses 

would be re l ieved  at 900°F i n  less than 15 seconds. 

i'he second nozzle SN 02 w a s  plasma-arc-sprayed with the  se lec ted  

coating system (see Figure 12) ,  assembled, leak checked at  1000 ps ig ,  and 

shipped t o  AFRPL f o r  t e s t ing .  

The t h i r d  nozzle SN 03 w a s  fabr ica ted  and coated with the  same 

coating system as SN 02 except t h a t  addi t iona l  bands of plasma-arc-sprayed 

high-temperature materials were added i n  the  e x i t  end as del ineated below. 

S ta t ion  No. 

0-7 

7-9 

9-11 

11-1 13.0 

13-1 14-9 

10-11 

12-12.9 

14-14.8 

Coating 

Base 

Base - g r i t  b las ted  

Hafnia 

Strontium Zirconate 

Zirconia 

Tungsten (Topcoat) 

Tungsten (Topcoat) 

Tungsten (Topcoat) 
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C. STATIC TESTS AND POST-TEST ANALYSES 

1. F a c i l i t y  

The water flow f a c i l i t y  f o r  test f i r i n g  the  T i t a n  I1 combus- 

t i o n  chamber with the Minuteman motors w a s  designed and constructed by AFRPL, 

Edwards A i r  Force Base, Cal i fornia ,  

b ra t ion  and checkout procedures is  contained i n  Reference ( 4 ) .  

A descr ipt ion of t he  system and t h e  cali- 

AFWL per- 

sonnel a l so  assembled the  nozzle with t he  a f t  c losure and V61 insu la t ion  and 

i n s t a l l e d  t h i s  assembly on the Minuteman Wing I motor (see Figure 9) .  

The water system capabi l i ty  is  as follows: 

Tank pressure 

Flow rate 

Maximum nozzle i n l e t  pressure 

- 250 t o  1200 p s i  

- 500 t o  1266 gpm 

- 825 p s i  a t  1200 gpnr flow 

Instrumentation w a s  supplied i n  accordance with the  speci- 

f i ca t ions  furnished by Aerojet and is  s h a m  i n  Table X I I .  

TCN2, TCN3, and TCN were located on down tubes opposite t he  propel lant  gra in  

va l leys  with TCN5, TCN6, TCN7, and TCN8 located 4 S 0  counter clockwise opposite 

the propel lant  grain peaks. 

Thermocouples TCN1, 

4 

I n  addi t ion t o  the  d i g i t a l  recorder, quick look da ta  w a s  

provided f o r  tank pressure,  i n l e t  pressure,  o u t l e t  pressure,  and flow rate. 

2. S t a t i c  T e s t  Se r i a l  No. 01  

The first s t a t i c  test f i r i n g  of nozzle fierial No. 01 w a s  made 

on 5 June 1968. Before f i r i n g ,  f i v e  cold flow test runs of 5 t o  10 seconds 

duration were made t o  e s t ab l i sh  the  downstream valve s e t t i n g  i n  r e l a t i o n  t o  

i n l e t  pressure and dater f low requirements. The f i f t h  cold flow test w a s  made 

with the downstream valve 23% open, i n l e t  pressure 775 psig,  o u t l e t  pressure 

560 ps ig  and flow rate 880 gpm. This was  considered t o  be as near  t o  the  
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desired rates as possible  i n  t h a t  t h e  downstream valve is not  ca l ib ra t ed  

f i n e l y  and is d i f f i c u l t  t o  ad jus t .  

The test f i r i n g  w a s  made at approximateiy 1:00 p.m. and con- 

t inued f o r  62.08 seconds. 

increased within one second a f t e r  start from 850 gpm t o  approximately 1100 gpm. 

Also, i n l e t  pressure decreased from 788 ps ig  t o  approximately 690 ps ig  while 

o u t l e t  pressure decreased from 570 t o  468 psig.  

indicated t h a t  the  water f l aw conditions changed at 0.21 seconds. 

normal throughout the  f i r i n g  and there  w a s  no v i s u a l  evidence of malfunction 

of equipment, however, it w a s  discovered later t h a t  t he  water i n l e t  valve 

closed a t  60.2 seconds due t o  a f a i l u r e  of e l e c t r i c i t y  on the  pad. 

of w a t e r  flow permitted excessive soak back of heat  through the chamber and 

It w a s  noted on the visual gauges t h a t  w a t e r  flow 

Later inspect ion of the  da t a  

Pc appeared 

This l o s s  

caused the  

2 grammed N 

chamber t o  

backside of t he  nozzle w a l l  t o  overheat. In addi t ion,  the  pro- 

purge w a s  delayed several minutes permit t ing s tored  heat  i n  the  

=ma?- i n t o  the  nozzle. 

Inspection of the nozzle severa l  minutes a f t e r  f i r i n g  con- 

firmed t h a t  a burnout had occurred i n  the  throa t  area. There w e r e  a l so  

severa l  s m a l l  leaks i n  the  a f t  manifold j o i n t  between the  tubes. 

3. Post-Test Analyses, SN 0 1  

a. Discussion 

The nozzle was removed from the  s t a n d  a t  AFRPL, d i s -  

assembled and shipped 20  Aerojet .  

c a l b u r n o u t  appearance, complicated by the  f a c t  t h a t  there  were two areas of 

burnout. 

covered with aluminum oxide buildup. 

out tubes w e r e  up tubes implying an RB0 type f a i l u r e  where the  hea t  exceeded 

Preliminary inspect ion confirmed a typi-  

The f i r s t  and most obvious w a s  the  throa t  region which w a s  not  

I n  t h i s  region, almost a l l  the  burned 
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l aye r  of A1203. The latter case is a more l i k e l y  explanation i n  that water 

wahs shut  o f f  before tail of f  and the  ni t rogen purge w a s  delayed several minutes. 

(3) The s m a l l  l eaks  i n  the  tube va l leys  at the junct ion 

of t he  af t  manifold are due t o  s t r e a m  erosion and a z o 3  p a r t i c l e  impingement at  

the  discont inui ty  formed by the  round t o  rectangular  tube adapters and t h e  

closing weld bead at t h e  a f t  manifold. Fa i lure  occurred by rupture  from internal 

pressure when the  scrubbed area became too t h i n  t o  withstand the i n t e r n a l  pressure.  

b. Heat Transfer Analysis SN 0 1  

A count of burned-out tubes w a s  made and cr ien ted  t o  the  

propel lant  grain pa t te rn .  

w e r e  downtubes o r  1st pass and 41  w e r e  uptubes o r  r e tu rn  pass. 

showed s l i g h t  surface melting and the  balance (77) w e r e  i n t a c t .  

of the burned-out tubes were opposite the  peak of t h e  propel lant  gra in  pa t te rn .  

Based on these data ,  t he  assumption was  made t h a t  t he  downtubes had burned out 

Fifty-one tubes w e r e  burned through. Of these,  10 

Twenty tubes 

The majority 

a t  a burnout hea t  f l u x  r a t i o  of 1.0. To determine what gas-side hea t  t r a n s f e r  

coef f ic ien t  w a s  necessary t o  s a t i s f y  t h i s  assumption a post- tes t  hea t  t r a n s f e r  

analysis  w a s  made with the ac tua l  test conditions,  coolant w a t e r  flow rate 

(117 lb /sec)  i n l e t  pressure (Q 750 psia)  and temperature of coolant (71’F). 

The r e su l t s  shown i n  Figure 1 4  ind ica t e  tha t  a hea t  t r a n s f e r  coef f ic ien t  t h a t  

is  2.4 times the .o r ig ina1  design value would s a t i s f y  the  downtube burnout assum- 

t ion .  It is  f e l t  t h a t  t he  hea t  t r a n s f e r  coe f f i c i en t  used i n  the  o r i g i n a l  study 

may have been cor rec t ,  however, i t  is  evident from the  burnout pa t t e rn  t h a t  t he  

l o c a l  heat f luxes due t o  mass flow e f f e c t s  w e r e  considerably higher than average. 

Using t h i s  higher  coe f f i c i en t ,  a parametric study of cool- 

The r e s u l t s  are shown i n  

Water flow was varied from 140 t o  200 l b / sec  a t  i n l e t  pressure of 

ing requirements f o r  the  uncoated chamber w a s  made. 

Figure 15. 

650, 750, and 850 psia .  Both 70 and 90°F water i n l e t  temperatures w e r e  

Page 34 



f l o w  d a t a  fmm AlEwpz i nd ica t e  a maximum flow of a p p r m i w t e l y  170 Ib/sec. 

is  evident Erom t h i s  study that. an uncoated &aslber probably would not survlve,  

$t 

A coated chamber study was then made t o  deternine the 

coaqipg thermal resistance required for 8q . f~  operaWm of $ha ghamblsr, Chafing 

thermal. res i s tance  is degined as thft rwtiQ of cseting thickness Ctc) t o  the  

coating t h e m 1  conductlvlfy (kc)# 

120 in.2-seo*oF/Zlfu at: coolant flow@ of 100, 140, and Z70 lb / sec ,  

o f  the  parametr$c study are shown $n Figure 16. 

1QO tnn,2-sec-aF/Btu and water flow of 1%0 Ib/sec, t he  maximum RBO is 0,6Z,  

while the  coatlng and tube wall ternperatwes are 33x0 and 1860*B, raspsctiively. 

Ilht: tvbe wall temperature (1860'F) at %he coating tube %nte:rfarce is  much hlgher 

Chan the desired design lim3.t of approximatqly 16OO'F; therefore ,  a study was 

made t o  Inves t iga te  metlaods of lowering t h i s  temperature. 

This resistance was varaed Prom 60 t o  

The r e s u l t s  

A t  CI thermal m a i q t a n w  of' 

he: way of 19wering the  tube wall temperature i a  fq t h i n  

the  tube wall thickness by qont:rolled g r i t  blasf4ng p r i o r  t~ Ebe c o a f h g  appli-  

cafion. The s f f c c f s  of slrch thinning 5s s h m  i n  F5gure 1 7  fo r  cnating tb@rmal. 

resistances ( t /k)  of 100 and 110 in,2-ww-9F/Btu; t he  latfer t / k  I s  %neluded t o  

show that an Inoreaqed coat ing thickness can be uged WlLth th inner  tube wall, 

Thls f igu re  Indicqtee f o r  idk of 100 (B reduction i n  tube wall bwpera ture  d r ~ m  

1860 t o  1500'F and c o a t h g  temperatwe from 3310°F t o  916O0F, as the tube wall 

i@ th$nned from 0,92Q t a  0.015 in.  

the  coolant-side tube w a l l  temperature (less than 1O'F f o r  a 0,015-in. w a l l )  

The tube thinn$n$ does s l l g h t l y  inweage 
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Calculations w e r e  made t h a t  ind ica ted  t h a t  a thermal 
2 2 resistance (t/lc) of 600 in. -sec-OF/Btu ins tead  of 100 in .  -sec-OF/Btu.at 

t h e  exit would reduce the  hea t  flux approximately 16 percent  and t h e  

temperature i n  t h i s  area would increase from 990 t o  1690OF. This would provide 

an increased margin and a b e t t e r  chance f o r  nozzle su rv iva l  i n  the  event t h a t  

some of the  coating f a i l e d  during the  test. 

c. Select ion of Design, Coating System and T e s t  
Plan f o r  Second T e s t  

A j o i n t  conference w a s  held with Aerojet and NASA per- 

sonnel f o r  the  purpose of adopting a course of act ion f o r  the  second nozzle 

test. Based on the  f a i l u r e  ana lys i s  and the  da t a  provided by the post- tes t  

heat  t r a n s f e r  ana lys i s ,  the  following items w e r e  agreed upon. 

(1) Thin the  tube w a l l  i n  the  th roa t  area t o  0.015 in .  

by g r i t  b l a s t ing .  

(2) Coat the  throa t  and forward sec t ions  with a 70 

2 Mo/3OAl2O3 mixture t o  give a (t/K) of 100 in .  -sec-OF/Btu. 

(3) Coat the  e x i t  end of the  nozzle with the  nickel-  

coated alumina-alumina topcoat system t o  obtain a t / K  of 100 5.0 i n .  a f t  of 

the  throa t  t o  600 in .  -sec-'F/Btu at the  e x i t  end. 2 See Figure 12.  

( 4 )  Eliminate the  d iscont inui ty  below the  upstream 

insu la t ion  and the nozzle by machining a taper on the  I D  of the  lower i n s e r t .  

(5) 

The se l ec t ion  of a 70 Mo/3? A 1  0 

Flow water a t  maximum system capacity.  

mixture f o r  coating 2 3  

the  throa t  area r a t h e r  than the  20 Ni/80 A1203 mix recommended as f i r s t  choice 

vide a th icker  

20 Ni/80 A1203 

at  the  end of the  material se l ec t ion  phase, w a s  based on the  necess i ty  t o  pro- 

s iona l  cont ro l  of thickness.  The 

coating has a thermal conductivity of approximately 
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2 1.6 Btu-in./sec/in, /OF x low5. 
thickness required over the  0,002 in.  n i cke l  aluminide primer was determined 

With a t / K  of 100 in.2-sec-oF/Btu, the coating 

t o  be 0,00137 tn. 
_I t / K  ,K lom5,, 

Primer N Alg 0,002 14.3 35 .o* 

85.1 
100,o 
__1_ 

20/Ni/80 A1203 0.00137 1.6 

*Subsequent thermal d i f f u s i v i t y  t e s t i n g  es tab l i shed  the  thermal 
conductivity of Nickel Aluminide a t  11.2 x 10-5 

The obv$ous d i f f i c u l t y  of obtaining a coating o f  s l i g h t l y  

over a m i l  i n  thickness indicated t h a t  a coating of higher  conductivity should 

be used. Also, because of the  l o c a l  high heat  f l ux  regions apparent from 

analysis  of the  f i r s t  $est and the  w c e r t a i n t y  of the  predict ions i n  these 

regione, it was decided t h a t  a higher  melting temperature m e t a l  should be used 

i n  place of n i cke l  which melts a t  2631'F. X t  was 

expected t h a t  Mo would perform b e t t e r  i n  a nozzle than in  the  d i s c  and 5-tube 

specimen tests insofar  as regression due to  oxidation. 

Molybdenum melts a t  4730"F, 

The labola tory  tests 

are made i n  the  open and en t r a in  undetermined amounts of a i r  i n t o  She plasma 

stream. 

expected with laboratory tests. 

d i f f e r e n t  weight percent mixtures of Mo and A l a 0 3  were calculated.  

30 A1203 mixture w a s  determined t o  give a coating thickness of 0.0039 in. This 

mixture was se lec ted  f o r  the  chamber and throa t  area, and nickel-coated alwnha 

The oxygen content expected i n  the  gas species i s  ac tua l ly  less than 

The coating thickness required f o r  severa l  

A 70 Mo/ 

with a K value of 3.19 with a pure alumina topcoat K = 1.6 was se l ec t ed  f o r  t he  

dlvergent sec t ion  from 5.0 i n .  downstream of the  th roa t  t o  the  e x i t ,  The 

thickness was t a i l o red  t o  r e s u l t  i n  gradual increase i n  t / K  from 100 t o  600 

in.2-sec-eF/Btu. See Figure 12. 

Planned test condifions were as follows: 

Water Plow Rate 170 lb / sec  
Tank Pressure 1100 p s i a  
I n l e t  Pressure 850 p s i a  
Out le t  Pressure 450 p s i a  
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T e s t  instrumentation used w a s  the  same as f o r  SN 01. 

4. S t a t i c  T e s t  SN 02 

The second test f-lring (Nozzle SN 02) w a s  accomplished 

The f i r i n g  w a s  of f u l l  durat ion with no at  AE’RPL on 20 September 1968. 

observed abnormality. 

no tube rupture o r  leakage. 

nozzle. 

t he  throa t  area and 3/8 in .  th ick  i n  the  e x i t  area. 

Visual inspect ion of the  nozzle after f i r i n g  showed 

A layer of A 1  0 had plated out mer the  e n t i r e  

This layer  w a s  approximately 1/16 i n .  th ick  over the  tube crowns in 
2 3  

The alumina had shrunk 

away from the  nozzle at  cooldown and had a network of cracks. 

t h e  coated nozzle. Figure 19 shows the condition of the nozzle immediately 

Figure 18 shows 

a f t e r  f i r i n g .  

5. Post-Test Analysis SN 02 

a. Laboratory Invest igat ion 

The f i r e d  nozzle w a s  leak checked with a i r  a t  100 psig.  

There appeared t o  be a leak  i n  the  forward sec t ion  i n  the  area j u s t  below the 

remaining ab la t ive  i n s e r t .  This area had approximately 0.080 i n .  of A 1  0 i n  

addi t ion t o  the o r ig ina l  plasma-arc-sprayed coating. A sec t ion  about 2.0 i n .  

2 3  

square w a s  removed and examined. No evidence of cracks o r  burnthrough could 

be found. It was concluded tha t  the leak may have been i n  an adjacent  area and 

a leak path w a s  formed under the A 1  0 

crack i n  the  A 1  0 severa l  inches away. No other leaks were indicated.  Since 

the  A 1  0 

the  cost  of f inding the  leak w a s  not warranted. 

permitt ing the air  t o  escape through a 
2 3  

2 3  
from the propel lant  w a s  i n  general  adhering t i g h t l y ,  i t  was  f e l t  t ha t  2 3  

Sections w e r e  cut from the  f i r e d  nozzle i n  the  forward 

sect ion,  a t  the  throa t  and the a f t  sect ion.  

and examined metallographically.  

These were mounted, polished, 

Measurements were made of the  plasma-arc-sprayed 
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thermal b a r r i e r  and of the tube t h i c h e s s  at  th  

forward s e c t  t h roa t  and a f t  secti  h 

22. The measurements taken are shown below. 

Forward Throat A f t  - 
Coating 

Tubes 

Figure 12 i l l u s t r a t e s  the  

w a s  constructed t o  give a 

0.0048 (min ) 0.0040 (min ) 0.0080 (min ) 

0.020 0.013 min 0.020 

nominal coating thicknesses.  The thermal b a r r i e r  

thermal r e s i s t ance  o f  I00 i n  -sec-OF/Btu i n  t h e  2 

2 th roa t  and forward sec t ion  with an approximately constant increase t o  600 i n  - 
sec-OF/Btu a t  the  a f t  end. 

The coating i n  the  forward sec t ion  and throa t  (Figures 20 and 

21) appears t o  have a void between the  n i cke l  aluminide primer and the  topcoat.  

This occurred e i t h e r  i n  the  sect ioning and pol ishing process o r  when the  

propel lant  A1203 cracked and f e l l  off  due t o  shrinking while cooling, 

of the  A1203 have been examined by X-ray d i f f r a c t i o n  f o r  the exis tence of 

e i t h e r  Mo o r  N i  on the  underside. 

Pieces 

The r e s u l t s  of the  analysis  are, t h a t  only 

alpha A1203 was observed. 

c o a t i n g m s  s t i l l i n  place and did not come off  with the  propel lant  deposited 

The conclusionwas made t h a t  the  plasma-arc-sprayed 

A1203 on cooldown. 

I n  addi t ion,  pieces  of the  A1203 were 

i c  examination. F 

and is par t i cu la r ly  i n t e r e s t i n g  i n  t h a t  i t  ghows th ree  

Bectioned, mounted, and 

a sec t ion  a t  the th roa t  

phases of growth. The 

l y  p la ted  out op the  r e l a t i v e l y  cold tube walls and 

f i r s t  few seconds of f i r i n g ,  when the  
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t h i  

Al 0 became molten and s fed off while 

Then as P 

molten layer  s o l i d i f i e d  and as fu r the r  cooling occurred, t h i s  area w a s  again 

s of the deposit  was such t h a t  t he  hot s i d e  e 

2 3  
dropped off and the  hea t  f l u x  decreased, 

C 

covered with t h e  same type of random gra in  deposit  indicated i n  the  layer  

near the  tube. 

f o r  the  three  phases suggests i t s e l f .  

grains  i n  a well-defined band. 

i n  appearance. 

This is, of course, speculation; however, no other explanation 

Figure 24 shows the  la rge  columnar 

These gra ins  are translucent  and c r y s t a l l i n e  

To summarize the  r e s u l t s  of the  metallographic p a r t  of 

post- tes t ana lys i s  : 

1. The w a l l  thickness i n  the  th roa t  area w a s  successful ly  

reduced from 20 t o  13 mils by control led g r i t  b last ing.  

2. The plasma-arc-sprayed thermal b a r r i e r  survived the 

start-up and stayed on even a f t e r  the  propel lant  deposited A1 0 

f e l l  off  on cooling. 

cracked and 2 3  

3. The aluminum from the  propel lant  oxidized and plated 

out over the coating i n  a uniform manner exhibi t ing what appeared t o  be 

three phases. 

b. Heat Transfer Analysis 

(1) Local Coolant Bulk Temperatures 

I n  addi t ion t o  the  regular  coolant i n l e t  and o u t l e t  

temperature da ta ,  two sets of four  thermocouples w e r e  i n s t a l l e d  t o  measure 

loca l  coolant bulk temperatures. 

s o l i d  propel lant  gra in  pa t t e rn  peaks and the  other i n  the  gra in  va l leys .  

The f i r s t  set was  located i n  l i n e  with the  
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The four  t h e w c o u p  were located i n  the  T 

(1) 3.9 in ,  upstream of th roa t ,  (2) 0. 

downstream of th roa t ,  and (4) 2.3 in.  

thermocouples f o r  t he  f i r s t  8 sec are shown i n  Figures 25 and 26, 

temperatures i n  Figure 25 are those i n  l i ne  with t h e  propel lant  peaks with T 1  

upstream of th roa t  and T4 near the  a f t  end. 

The 

Figure 26 represent8 temperatures 

i n  the  propel lant  val leys  with T8 located near the  a f t  end. 

couples were i n s t a l l e d  i n  downtubes. 

A l l  e igh t  thermo- 

(a) qocal Heat: Flux 

It is immediately epparant t h a t  the  loca l  

coolant temperatures decrease instead of increasing as m e  would expect: in a 

downtube. 

cooler backside f lu id .  Tt is not  possiblp,  therefore ,  t o  determine l o c a l  

Reat fluxes d i rec t ly  from thssc  data. 

This decrease i s  at t r5buted t o  t h e  hot-side f l u i d  mixing with the  

(a) Propellant Grqin Pat  t e rn  Ef f e c t s  

These coolant temperatures ind ica te  t h a t  t he  

propel lant  peak region (Figure 25) i s  h o t t e r  than the propel lant  va l ley  region 

(Figure 26). 

in .  upstream of the  throat .  

T5 peaked a t  99*F i n  2.5 sec. 

not  er 5W 01 a f t e r  the  f i r s t  test where the  burnouSo were 

apparently i n  l i n e  with the  peaks. 

This i s  most not iceable  i n  comparing T 1  and T5 both 1Qcat;ed 3.9 

Themcouple  T1 peaked a t  1019F i p  1.5 sec while 

This informagion v e r i f i e d  t h e  burnout pat te rn  
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Calculations w e r e  made t o  determine the  

d i f fe rence  i n  hea t  load between the  propel lan t  peaks 

it w a s  assumed t h a t  T4 and T8 represented the  average coolant bulk temperatures 

near the  a f t  end. 

areas, an average hea t  f l ux  w a s  calculated f o r  each region. 

t h a t  a t  8 sec the  average hea t  f l ux  i n  the  peak region was approximately 22.5 

Using these  temperatures and knowing the  hea t  transfer sur face  

The r e s u l t s  indicated 

percent higher  than t h a t  i n  the  va l leys .  

(2) Coolant I n l e t  and Outlet  Temperatures 

Chamber coolant i n l e t  and o u t l e t  temperatures w e r e  

The chamber taken, and f o r  t h i s  test the  average i n l e t  temperature was  67°F. 

coolant bulk temperature rise vs t i m e  is shown i n  Figure 27. 

represents  an average temperature rise of the  chamber coolant,  and, therefore ,  

and average hea t  t r ans fe r  rate, but  these averages do not  necessar i ly  represent  

the  l o c a l  circumferentialvariation as shown by the  l o c a l  data .  However, these  

This f igu re  

da t a  w e r e  used t o  compare test r e s u l t s  t o  the  predicted.  

(a) T e s t  Data Bulk Temperature R i s e  

The o v e r a l l  bulk temperature rise (Figure 27) 

peaked out  a t  32OF i n  8 sec,  held approximately constant t o  15 sec, then de- 

creased cont inual ly  t o  21°F a t  60 sec. This decrease can be a t t r i b u t e d  t o  

both the  chamber pressure p r o f i l e  and the  p l a t ing  out e f f e c t s  of the  alumina 

on the  coated tubes. Calculations were made at 8 sec, the  maximum coolant 

o u t l e t  temperature indicated,  t o  determine the  temperature r ise a t  the  propel lant  

gra in  peak region. 

I n  the  previous ca lcu la t ion  it  w a s  determined 

tha t  the peaks w e r e  22.5 percent higher than the  va l leys .  

conservatively assumed t h a t  the  8 s e c A T  of 32OF represented the  va l l ey  da ta ,  

Also, if it were 

AT would ca l cu la t e  t o  be approximately 39OF. This value is 

then compared t o  the  predicted value of 44°F temperature rise. 
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(a) Comparison of Test fa Pre4lct ion 

of 44'F was made based Qn a thm 

of' the chwber  to  account for the Wo-dIm@nsi 

(Ref. 5 ) .  Thts arodificatton was 'basad on PR 

the  iden t i ca l ly  coqtaured Titan I T T M  Stags. TI. chamber program and, waa e%m$lar 

t o  t h a t  cur ren t ly  used i n  all 1Cil;an TI33 $tag@ I: chambers. 

"he tes t  da ta  maxlmvm tmpergturft  ~ % $ q  o f  3gRF 

compares t o  44*F of t h e  new predictqd va.Zrze. Considergng other unoelrtainhiesr 

such as the effect of addl t iona l  alumina p;Lathg out: aq the  tubtp,, I t  i s  felt: 

t ha t  no cor rec t ion  jln the anaLytical, model &$ necasmwy, $ .ers  t he  tmt: d a m  sub- 

s t an t i a t ed  tbe  use of the  current analyti,cal model, as $% is  withopt modlfication. 

(3) co~clusions 

(a) Looal heat  flvrx dqpa c a w o t  be obtained frm 

the local qod.ant bulk temperature da ta ,  

(b) The average haat  flux I n  $he prgpellanb gFain 

peak regions is approxj;mately 22.5 percent gs+a'c@r than $he va l l ey  ragion. 

maximum was 32'F a t  8 sec and dacrsased to 21'F at  60 see? 

(d) The current  analyfrlc81 model I s  safisfactorg 

for fu@ure analysis. 

c .  Sdc3c%ion of Psslgn, Gwatlng Bysitem and Teet Comdltlons 
fo r  Third S t @ t l c  T e ~ t  

(1) Revised Test Requirement@ 

Pope-test ana lys i s  o f  the  f i r s t  8ee~'c nozsla W i c a t e d  

t h a t  the h4gh l o c a l  heat  EZuxea dye t o  the, prwgellant: gxsim ps t tq rn  would hqve 

t o  be accounted f o r  i n  the next test ,  The swccassZvl t e s t  o f  the  second nozzle 
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w a s  evidence t h a t  t h i s  could be done by employment of a properly designed 

and applied thermal b a r r i e r  and increased w a t e r  fluw. Baaed on apparent 

behavior of the  propel lan t  p la ted  A1203 and the  r educ t i  

temperature rise, it w a s  theorized t h a t  after 8 seconds, the  water f l a w  could 

in predicted bulk 

be reduced t o  coincide approximately with the  reduct ion i n  hea t  f l u x  t o  the  

coolant as evidenced by the  curve i n  Figure 27. 

in agreement t o  change the  program scope t o  include a n a n a l y s i s  of the  e f f e c t s  

of the  p la ted  out  alumina and t o  prepare a test program t o  include gradual 

Negotiations with NASA resu l ted  

reduction i n  coolant flow after 8 or more seconds. 

An addi t iona l  change i n  scope added a requirement 

t o  include seve ra l  high melting point  ceramics over the  o r i g i n a l  thermal b a r r i e r  

coating of the  t h i r d  nozzle with the  objec t ive  of determining the  reac t ion ,  i f  

any, of these materials with A 1  0 and the  gas species .  2 . 3  
(2.) H e a t  Transfer Analysis 

To determine minimum water flow requirements under 

s a f e  conditions while accounting f o r  the  thermal r e s i s t ance  of the  propel lant  

p la ted  alumina, two hea t  t r ans fe r  analyses w e r e  made f o r  the  coated chamber. 

The first assumed no alumina p l a t ing  and the  severe thermal conditions experienced 

during the  start  t r ans i en t s  with coating temperatures of 3200'F. The second 

ana lys i s  assumed alumina p l a t ing  a t  3700OF and r e a l i s t i c  coolant bulk temperatures 

experienced i n  the  second test. 

t o  be 1100 p s i a  and the  water flow rate w a s  reduced from 170 t o  50 lb / sec ,  

or  approximately 1225 t o  360 gpm. 

I n  both, the  water tank' p ressure  was  assumed 
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The maximum burnout hea t  flux r a t i o s  and wall 

temperatures are shown in  Figures 28 and 29. 

a$ f u l l  flow (170 lb/sec)  and RB0 i s  0.53 and the  minimum f 

1.0 is 70 lb / sec  or approximately 510 gpm. 

occur the 

the water could be reduced t o  50 lb/sec,  

For the  severe eta 

Assuming khat alumina p la t ing  does 

a t  f u l l  f l o w  (170 lb/sec) is 0.39 and t o  achieve an RB0 o f  1.0 RBQ 
These predict ions are val'id only 

i f  the o r ig ina l  coating remains i n t a c t .  

analysis  was t o  reduce the  water f l w  rate a f t e r  10 seconds i n  s t e p d m  t o  a 

minimum of 80 lb /sec  holding each s tep  f o r  a minimum of 5 seconds. 

The recommendations based on the  above 

(3) Selection of Experimental Coatings 

The bas i c  criteria f a r  s e l ec t ion  of high temperature 

coating materials for evaluation by test f i r i n g  w a s  t h a t  the  melting points  

should be above 4700'F and tha t  they should be compatible with A1203 and the 

exhaust gas species.  

A literature search was made covering recent  data  

on high'temperature oxides. Table XI11 lists these mater ia ls  and t h e i r  

thermal and chemical propert ies .  

oxides and mixed oxides. 

are f o r  100% dense materials except where noted. 

Data w a s  not ava i lab le  f o r  severa l  of the  

The thermal conductivity and thermal expansion values 

Table XIV ind ica tes  candidate coating materials 

compatibility with the gas species  based on the free energies of fhe materials 

and the gas species.  

react ion while mlnvs number indicates conditions f o r  reaction as favorable. 

A plus number ind ica tes  a condition unfavorable t o  a 

Zr02, €EO2 and SrO*Zr02 were selected f o r  t e s t ing  

i n  the  nozzle exit sect ion.  

above and are easizy plasma-arc-spray 

These materials have melting points  of 4700'F or  

. Zirconia and hafnia  have very l a w  
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thermal conductivity and are lcnm t o  have good thermal sho 

used as t h i n  coatings. 

Zirconate and there  is l i t t l e  published da ta  other  than t h a t  its thermal shock 

r e s i s t ance  is somewhat i n f e r i o r  t o  zirconia and o the r  z i rconates  and its 

porosi ty  is somewhat higher.  

proved impossible t o  plasma-arc-spray, SrOeZrO2 was subs t i t u t ed  due t o  its 

a v a i l a b i l i t y  and ease of spraying. 

Aerojet  has had l i t t l e  experience 

When magnesium oxide was  eliminated because it 

MgO, Zr02, Hf02 and Tho2 are attractive due t o  t h e i r  

There is no experience recorded concerning plasma- 

This is probably due t o  its reported r ad ioac t iv i ty  and 

low thermal conductivity.  

arc-spraying of t ho r i a .  

poor thermal shock proper t ies .  

thor ia .  

i t s  vaporization. 

A s p e c i a l  f a c i l i t y  would be  required f o r  spraying 

MgO is reported t o  be d i f f i c u l t  or  impossible t o  plasma spray due t o  

This w a s  confirmed by a laboratory test where 10 passes of 

the  plasma torch over a s u b s t r a t e  f a i l e d  t o  r e s u l t  i n  a measurable increase i n  

specimen thickness.  

of 4700"F, however, i t s  thermal conductivity is high, it reacts with H20 above 

The melting point  of Be0 a t  4660°F is near the  t a r g e t  

3000°F and its reported t o x i c i t y  creates unknown handling problems. The o ther  

candidate materials l i s t e d  have melting po in t s  considerably lower than 4700°F 

and w e r e  el iminated from f u r t h e r  considerat ion f o r  t h a t  reason. 

6. Static T e s t  SN 03 

The t h i r d  test f i r i n g  (Nozzle SN 03) was accomplished 

on 19 January 1969. 

w a s  regula tor  valve malfunctioned a t  approximately 27.621 and was  below tank 

pressure at  36.054 seconds causing a loss of flow and i n l e t  pressure.  

The f i r i n g  w a s  of f u l l  duration. The LN2 tank t o  H20 tank 

Visual 
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inspect ion a f t e r  f i r i n g  showed no evidence of leakage or l o s s  of coating, 

The appearance of t h e  t e s t ed  nozzle w a s  near ly  i d e n t i c a l  t o  SN 02. 

mental coating materials t h a t  had been sprayed i n  the  ex i t  end appeared as 

mu1 t ico  l o  red bands . 

The experb- 

Planned test conditions were as follows: 

T + 12 T + 22 
I n i t i a l  1st Reduction 2nd Reduction 

Water Flow Rate, l b l s e c  170 125 80 

Inlet Pressure , p s i a  900 

Out le t  Pressure,  p s i a  450 

7. Post-Test Analysis SN 03 

a. Lab0 ra t o ry Invest igat ion 

The t e s t ed  nozzle w a s  removed from the  s tand and returned 

t o  Aerojet. Visual inspect ion indicated no damage o r  abnormalities. The 

condition of t he  ab la t ive  i n s e r t s  and the  coating w a s  near ly  i d e n t i c a l  t o  t h a t  

of the  previous test nozzle SN 02. 

The nozzle was  sectioned t o  obtain specimens of the  

experimental coatings i n  the  a f t  sect ion.  

fo r  microprobe analysis.  

Table XV. 

These were mounted and polished 

A specimen w a s  made f o r  each condition shown i n  

The purpose of t he  microprobe analysis  w a s  t o  determine 

the  extent of react ion,  i f  any, between the  plasma-arc-sprayed layers  and 

between the  top layer  and t h e  A1203 o f  t he  propel lant .  

the 2nd and 3rd l aye r  i n t e r f ace  and the  3rd l aye r  surface w e r e  examined. 

specimens 6, E, G, containing t h e  tungsten topcoat, t he  3-4th l aye r  i n t e r f ace  

and the  4th l aye r  sur face  were examined. 

material layer  are del ineated below: 

On specimens B, D, F, 

On 

Results tabulated by specimen and 
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Specimen 

B 

B 

B 

E 

G 

G 

G 

G 

Elenknt 

Al 

Hf 

A1 

A1 

Hf 

W 

A1 

A1 

Z r  

A1 

A1 

Z r  

W 

A1 

AI 

Z r  

A1 

A1 

Z r  

W 

A1 

Layer 

2-3 

3 

Surf ace 

3-4 

3 

4 

Surface 

2-3 

3 

Surf ace 

3-4 

3 

4 

Surface 

2-3 

3 

Surface 

3-4 

3 

4 

Surf ace 

Resul ts  

No di f fus ion  

Found, no diffusjton 

Residue CJ 2 t o  10 p th ick  

No di f fus ion  

Found,. no d i f fus ion  

4 4 %  A1 all through 

Residue r /  2 t o  3 1-1 thick 

No d i f fus ion  

Found, no d i f fus ion  

Small residue 

No di f fus ion  

Found, no d i f fus ion  

< 4 %  A1 content 

2 t o  3 1-1 residue 

No di f fus ion  

Found, no diffusion 

Residue ( 2  1-I thick 

No di f fus ion  

Found, no di f fus ion  

4 5% A1 content throughout 

Residue L 2  I.r thick 

Page 48 



Report CR-72549 

b. Data Analysis 

Review of the  d i g i t a l  da t a  indicated t h a t  i n i t i a l  flow 

rates were somewhat higher than p lamed and higher than indicated by t h e  v l s u a l  

and quick look data. Table XVI summarizes the  s ign i f i can t  data  and sequence of 

events. 

continued t o  reduce t o  zero a t  36.054 seconds. 

remove control  downstream valve was opened permitt ing an increased flow while 

pressure i n  the pressure out  continued t o  f a l l  o f f .  

the  planned 600 gpm maximum. 

conditions were out  of the range of conditions s tudied;  therefore ,  i t  w a s  

necessary t o  perform a hea t  t r ans fe r  analysis  using t h e  ac tua l  test conditions. 

Calculations indicated a maximum burnout hea t  f l ux  r a t i o  of 0.74 which i s  approxi- 

mately 18% higher than would have been experienced i f  t he  regulator  had not  

malfunctioned. 

calculated t o  be 1425'F. 

the  minimum flow (610 gpm) and maximum l o c a l  coolant bulk temperature (85'F) were 

experienced. 

representat ive points  during the  test. 

47.5'F r a the r  than 70'F provided a small margin i n  RB0. 
act ion by NASA and AFRPL personnel i n  opening the  downstream valve when W 

regulator  valve closed, contributed t o  obtaining a successful  test under poten- 

t i a l l y  hazardous conditions. 

A t  27.621 seconds regulator  pressure dropped below tank pressure and 

A t  approximately 45 seconds the  

Flow did not  f a l l  below 

Because of the  valve malfunction the ge tua l  test 

The corresponding tube w a l l  temperature on the  coating s i d e  was 

These maximum conditions occurred a t  44 seconds when 

Table XVII compares predicted burnout hea t  f lux  r a t i o s  (so) a t  

The f a c t  t h a t  t he  water temperature w a s  

This,  coupled with quick 

pressure 2 

The 610 gpm water flow rate represents a reduction OF 

58% under the  ac tua l  s t a r t i n g  flow rate and 52% under $he planned s t a r t i n g  

flow rate. 
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V. CONCLUSIONS AND RECOMMENDATIONS 

Several candidate A l  0 base plasma-arc-sprayed thermal b a r r i e r  materials 2 3  

w e r e  analyzed f o r  compatibil i ty with t h e  exhaust gas spec ies  of the 260-in. s o l i d  

propel lant  rocket motor. 

laboratory t e s t i n g  f o r  res i s tance  t o  thermal shock and corrosion. 

Three coating systems w e r e  superior  t o  a l l  others .  

The promising coatings w e r e  f u r t h e r  evaluated by 

These w e r e  80 A1203/ 

20 N i ,  Ni-coated A1203, both with a pure A1203 topcoat,  and Ni/A1203 i n  various 

weight percents. 

Two subscale tests were made using coated water-cooled nozzles and 

Wing I Minuteman s o l i d  propel lant  motors. 

both tests w e r e  a 70 Mo/30 A l  0 

Ni-coated Al 0 

tests with no evidence of erosion o r  cracking and remained i n t a c t  when t h e  

A1203 i n  t h e  propel lant  plated out over t h e  nozzle and cracked and f e l l  of f  on 

cooldown. 

The thermal b a r r i e r  materials used i n  

mixture i n  t h e  chamber and throa t  area and a 2 3  

plus A1203 topcoat i n  t h e  e x i t  area. The coating survived t h e  2 3  

To test the  theory tha t  t he  propel lant  alumina which p l a t e s  out over t h e  

nozzle i s  i t s e l f  an e f f ec t ive  thermal b a r r i e r  during t h e  coated nozzle test, the  

water flow rate w a s  reduced by 52% under t h a t  predicted s a f e  during start t r ans i en t  

conditions. Post- tes t  inspection revealed appearance t o  be nearly iden t i ca l  t o  

the previous test with no evidence of l o s s  t o  coating. 

On t h e  bas i s  of t e s t i n g  and ana lys i s  performed during the  program t h e  

conclusions are: 

1. The alumina-based thermal b a r r i e r s  developed are capable of surviving 

the  environment of t h e  Minuteman exhaust gases and functioning as a thermal b a r r i e r  

t o  provide a subs t an t i a l  reduction i n  heat f l u x  t o  t h e  coolant. 
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2. The alum$na i n  the  propel lant  p l a t e s  out over t h e  nozzle i n  a uniform 

manner, reaches a surface temperature “3700’F at which t i m e  it melts and sluffs 

of f .  A t  t a i l o f f  i t  increases  i n  thickness;  then on cooldown it shrinks and cracks. 

3 .  By empj-oying a plasma-arc-sprayed thermal b a r r i e r  and taking advantage 

of the e f f e c t  of propellant plated dlumina in reducing t h e  heat f lux,  water flow 

rates can be reduced a t  least by 52% afcer IO seconds. 

The alumina i n  t h e  propel lant  p l a t e s  out on the  nozzle walls up t0  31’8 in .  

thick.  

of thermal b a r r i e r  materials capable oE operating at  a surface temperature >45OO0F 

would prevent t he  alumina from p la t ing  out .  

operating at >450QeF would provide a grea te r  thermal res i s tance  and thereby reduce 

coolant requirements. 

thermal b a r r i e r s  be devcloped f o r  use on water-cooled nozzles. 

coolant requirements, it is recommended t h a t  s tud ies  be i n i t i a t e d  for developing 

other  methods of obtaining more e f f i c i e n t  u t i l i z a t i o n  o f  t h e  coolant. 

Its weight and i ts  e f f e c t  on performance @re not known, The employment 

In addi t ion,  a thennal b a r r i e r  

For these reasons, i t  is recommended that higher temperature 

To fu r the r  reduce 

4. The t o t a l  bulk temperature rise of the coolant w a s  low (%40°F) 

i n  a l l  cases i n  r e l a t i o n  t o  the  temperature rise t o  t h e  point  of bq i l ing  ( ~ 4 0 0 ~ F ) .  

This was because of t he  high flow rates required by t h i s  chamber design t o  

prevent burnout. 

Page 51 



Report CR-7254 9 

REFERENCES 

1. Parker, W.J. ,  et aL, "Flash Method of D e t e r m i n i n g  Thermal Di f fus iv i ty ,  
H e a t  Capacity, and Thermal Conductivity", Journal. of Applied 
-9 32 1679 (1961). 

Grisaffe ,  S.J., "Analysis of Shear Bond Strength of Plasma Sprayed 
Alumina Coatings on S t a i n l e s s  Steel ,"  NASA TND-3113, November 1965. 

2. 

3. Harrington, D.G., and Adair, S.E., "Development of Thermal Barrier 
Coatings f o r  Regeneratively Cooled Rocket Engine Thrust Chambers (U) " , 
BSD-TDR-119, Contract AF 04(647)-652 SA4, 20 June 1963 (C). 

4. Zorich, D.R. and Bassoni, A.A., "Description of a Gas-Pressurized 
Water-Flaw System f o r  the  NASA Water-cooled Nozzle Program", Technical 
Report AFRPL-TR-68-163, September 1968. 

5. Beck, L.H. , Massier, P.F., and G i e s ,  H.L., "Convective H e a t  Transfer 
i n  a Convergent-Divergent Nozzle", Technical Report 32-415, 15 November 
1963, Jet Propulsion Laboratory, Pasadena, Cal i fornia .  

6. JANEF Thermochemical D a t a ,  Dow Chemical Co., Midland, Michigan. 

7. Ign i t ion  of Metals i n  Oxyg en, E.S. White, J. J. Ward, Battelle I n s t i t u t e ,  
DMIC Report 224, 1 Feb., 1966. 

8.  

9. 

10. 

11. 

1 2  

13. 

14 .  

15. 

16. 

17 .  

18. 

19. 

Oxide Ceramics , E. Ryshkewitch, Academic Press ,  1960 

Engineering Proper t ies  of Ceramics, Lynch, Ruderu, Duckworth, Battelle 
Memorial I n s t i t u t e ,  AFML TR-66-52, June 1966. 

High Temperature Inorganic Coatings, John Huminick, Jr., Reixihold 
Publishing Co., New York, 1963. 

Proper t ies  of Refractory Materials: 
LMSD-2466, Lockheed Ai rc ra f t  Corporation, Sunnyvale, C a l i f .  

Collected Data and References 

Unpublished Data, Aerojet-General Corporation, Sacramento, Cal i f .  

Summary of 13th Refractory Composites Working Group Meeting, 
AFML TR-68-84, Captain Blvin Beardslee. 

Engineering Proper t ies  of Ceramics, Lynch, Ruderu, Duckworth, Batelle 
Memorial I n s t i t u t e ,  AFML TR-66-52, June 1960. 

High Temperature Inorganic Coatings, John Huminick, Jr., Reinhold 
Publishing Co., New York, 1963. 

Oxide Ceramics, E. Ryshkewitch, Academic Press, 1960. 

Unpublished Data, Aerojet-General Corporation, Sacramento, Ca l i f .  

Summary of 13th Refractory Composites Working Group Meeting, 
AFML-TR-68-84, Captain Elvin Beardslee. 

Proper t ies  of Refractory Materials: 
LMSif-2466, Lockheed A i r c r a f t  Corporation, Sunnyvale ,Calif .  

Collected Data and References 

Page 52 



Report CR-72549 

BIBLIOGRAPHY 

1. 

2. 

3. 

4. 

5. 

6. 

7 .  

8. 

9 .  

10. 

11 * 

12 

13. 

14. 

Plasma A r c  Materials Testing for Re-Entry, Aerospace Corp., Report 
TDR-269(4240-10)-11, June 1964. 

JANAF Thermochemical Tables 

Ign i t ion  of Metals i n  Oxgg en, Battelle Memorial I n s t i t u t e  - DMIC Report 
224, Feb. 1966. 

Aluminide and Beryl l ide Pro tec t ive  Coatings f o r  Tanta lum - Paper presented 
a t  AIME Conference on High Temp Materials, Apr i l  1961, by D. I). Lawthers 
and L. Sama. 

G a s - M e t a l  Reactions i n  Rocket Nozzles, A i r  Force Materials Lab Report 
ASD-TDR 62-327, May 1963. 

Chemical Corrosion of Rocket Liner Materials and Propel lant  Performance 
Studies , Vol. I and I1 , Philco Aeronautronics Lab. , Pub. No. V-2384, 
Dec. 1963. 

Thermal Barrier Liners i n  High Performance Rocket Engines - D.G. Harrington - 
Paper Presented t o  AIAA Propulsion Conference, Co50. Springs, June 1965. 

Alumina - Metal C e r m e t s ,  T.S. Se r l in ,  1960. 

Chromium-Alumina Base C e r m e t s ,  C .  L. Marshall, 8 & 9 Edited by 
J. R. Tinklepaugh, 1960. 

Analysis of Bonding Mechanism Between Plasma Sprayed Tungsten and 
S ta in l e s s  Steel Substrate ,  S. J. Grisaf fe ,  NASA TM, 2461 - Sept. 1964. 

Analysis of Shear Bond Strength of Plasma Sprayed Alumina Coatings on 
Sta in less  Steel ,  S. J. Gr isaf fe ,  NASA TND-3113, Nov. 1965. 

Invest igat ion of Mechanisms f o r  Oxidation Pro tec t ion  and Fa i lure  of 
In t e rme ta l l i c  Coatings f o r  Refractory Metals, Aeronutronic R e s .  Lab, 
AST-TDR-63-753, Sept. 1965. 

Propert ies  of Refractory Materials: Collected Data and References - 
Lockheed Ai rc ra f t  Corp., LMSD 2466, dtd 24 June 1958. 

Tungsten and Rocket Motors, Stanford Research I n s t i t u t e  - Report t o  
Special  Pro jec ts  Off ice , Dept . of the  N a v y ,  Contract No. NORD-18619 (FBM) 
SRI Projec t  SW-2785, dtd 23  March 1961. 

Page 53 



Report CR-72549 

Cr 0 
2 3  

w03 

A1203 

Moo3 

Zr02 

N i o  

TABLE I. THERMQCHEMECAZ, RATA FOR CERTAIN METAL OXIDES 

Welting Point,  
"C 

2435 

1473 

2045 

79 5 

2715 

1990 

Zr02 

IJO3 

Cr203 

Moo3 

A1203 
N i O  

Boiling Point, 
O C  

4000 

2980 

1155 

c 

Density, 
J p p C  

Beat o€ Fusion 
g c a l l m o l  

7.16 

3.96 

4.69 

5 , 6  

6.65 

315.0 

26.0 

20.8 

12.1  

F, R ea l /mol  
1227°C 1727°C ' '2227°C 

( 3 140 " F) ( 2 2 40 " F) (4040" F) 

-193.8 -172.3 -150.07 

-111.4 -83.6 -56.5 

-178.6 -147.9 -115.6 

-159.7 -95.9 -88,l 

-286.08 -247.6 -209.8 

-25.8 -15.1 -3.7 
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TABLE 11. COMPATIBILITY OF CANDIDATE M E W S  W I T H  T€?E EXHAUST GAS SPECIES 

Free Ebergy of Reaetlons, 

Reaction 

3H 

6H + A1203 

6HC1 + A1203 

2HC1 + W 

H O  + A 1 0  

2CO + A1203 

2w + 2co 

W + H  

2(g) + A1203 

( g  1 

(8 )  

( 8 )  

2 ( 8 )  2 3  

3 W  + 9H20 

M o  + 2CO 

M o  + 13 

Mo + 3H20 

W + 3C02 

M o  + 3C02 

2 N i  + 2 C02 

N i  + H20 

2Ni + O2 

4 C r  + 6 C02 

CR + 3H20 

4CR + 302 

3H20(g) + 2A1 

2 A l  + 3H 0 
2 (g) 

3H20(g) + 2A1C13(g) 

2Al 02H(g) 

w2c + co2 

+ H  
2(g) 2(g) 

wc1 

2 ( g )  
A120(g) + 2CO 

No Reaction 

w o  

MoC + C02 

No Reaction 

Moo3 + 3H2 

W 0 3  + 3CO 

Moo3 + 3CO 

2Ni0 + 2CO 

N i O  + H2 

2Ni0 

2Cr02 + 6CO 

Cr02 + 3H2 

2Cr02 

3 9(g) + 9 H ~  

F, Kca1-rnoLe-l to  500 psi 
2000°F 300OoF 4000°F 

+172 

- 63 

+ 54 

+ 74 

+257 

+171 

- 0.5 

+ 27 

+ 9.7 

+ 31 

- 7  

- 16 

- 50 

-128 

- 61  

-393 

-153 

- 42 

+ 60 

+ 69 

+2 30 

+148 

+ 1 2  

- 11 

+ 1 2  

+lo. 4 

+ 9.5 

+ 25 

+ 18 

- 30 

-132 

- 51 

-329 

+136 

- 36 

+ 7 1  

+ 65 

+20 7 

+123 

+ 31 

+ 42 

+ 8  

- 5  

+ 2.7 

-13.5 
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TABLE V'. "3WW& CONDUCTTV'LTY OF PLASMA SPRAYED HATERIALS AS DETElU"lINE1D BY 
TJAERMAZ DIFFUSXVITY MEAS-NTS 

A120 3 

Ni Coated A1203 

80 A1203/20 Ni 

Nickel Aluminite (Metco 404) 

84 A1203/16 Mo 

SO Al2O3/50 Mo 

30 Al2O3/7O Mo 

A ~ ~ O ~ / M O  wires 

Temperature, 'F 
RT 750 '140q 

1 .61  

3.19 

1.42 

11.2 

2,43 1.53 1.82 

2.79 2.10 2.71 

4.92 

4.28 3.16 4.55 

1.74 

K = Btiu-in./sec,in.2 P x 



Specimen 
Mo . 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

1- 3 

14 
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TABLE VI. THERMAL BARRIER ADHEREXCE EVALUATION 

Surface 
Finish, 

25 

25 

25 

25 

250 

240 

250 

240 

2 50 

250 

250 

250 

250 

250 

f-li cr oinche s Rb@ 
C o a t i n g  Primer 

(Weight 9) 
U l t i m a t e  Shear 
Strength, p s i  

664 

1245 

1250 

3.110 

744 

1542 

1010 

2044 

1670 

1998 

1750 

1198 

3320 

2480 
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TABLE XV. MICROPROBE ANALYSIS - EXPERIMENTAL COATINGS 

A BARE GRIT BLASTED 

Primer - Is t 2nd 

B Ni A l 3  Ni-Coated A1203 

A1203 

11 I 1  11 C 

11 11 I 1  D 

I f  11 f1 E 

11 11 11 F 

11 I1 I 1  G 

- 3rd - 4th Propellant 

A1203 
Hf O2 - 

11 W I 1  

I f  Sr 0. Zr 0 - 
W I1 I t  

11 Zr02 - 
I1 W 11 
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Niekel-Coated Alumina Powder 

Figure 3 
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Specimen W6 Ni-Coated A1203 Intermediate Coating 

Figure 4 
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Throat - 250X 
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Figure 22 
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